|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 322, Pages 45–62
(Mi znsl392)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
On the distribution of norms of prime ideals of the given class in arithmetic progressions
S. A. Gritsenko Belgorod State University
Abstract:
Let $\mathcal C$ be a class of ideals of the ring of algebraic numbers of the imaginary quadratic field. Let $l$ and $q$ be relatively prime integers, $1\le q\le\log^{A_1}x$, $A_1>1$. The asymptotic formula for the number $\pi_1(x,q,l,\mathcal C)$ of prime ideals belonging to the class $\mathcal C$ whose norms do not exceed $x$ and lie in an arithmetic progression got in this paper.
Received: 03.03.2005
Citation:
S. A. Gritsenko, “On the distribution of norms of prime ideals of the given class in arithmetic progressions”, Proceedings on number theory, Zap. Nauchn. Sem. POMI, 322, POMI, St. Petersburg, 2005, 45–62; J. Math. Sci. (N. Y.), 137:2 (2006), 4634–4644
Linking options:
https://www.mathnet.ru/eng/znsl392 https://www.mathnet.ru/eng/znsl/v322/p45
|
|