Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 385, Pages 98–134 (Mi znsl3902)  

This article is cited in 3 scientific papers (total in 3 papers)

On the asymptotics of an eigenvalue of a waveguide with thin shielding obstacle and Wood's anomalies

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (390 kB) Citations (3)
References:
Abstract: Conditions are found out for the existence and absence of an eigenvalue in the interval $(0,\pi^2)$ of the continuous spectrum of the Neumann problem for the Laplace operator in the unit strip with a thin (of width $O(\varepsilon)$) symmetric screen which, as $\varepsilon\to+0$, shrinks into a line segment perpendicular to sides of the strip. An asymptotics of this eigenvalue is constructed as well as the asymptotics of the reflection coefficient which describes Wood's anomalies, namely quick changes of the diffraction characteristics near a frequency threshold in the continuous spectrum. Bibl. 32 titles.
Key words and phrases: asymptotics of an eigenvalue on the continuous spectrum, acoustic wave guide, trapped waves on the surface of a liquid.
Received: 23.08.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 178, Issue 3, Pages 292–312
DOI: https://doi.org/10.1007/s10958-011-0549-6
Bibliographic databases:
Document Type: Article
UDC: 517.956.8+517.958+531.33+531.327
Language: Russian
Citation: S. A. Nazarov, “On the asymptotics of an eigenvalue of a waveguide with thin shielding obstacle and Wood's anomalies”, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Zap. Nauchn. Sem. POMI, 385, POMI, St. Petersburg, 2010, 98–134; J. Math. Sci. (N. Y.), 178:3 (2011), 292–312
Citation in format AMSBIB
\Bibitem{Naz10}
\by S.~A.~Nazarov
\paper On the asymptotics of an eigenvalue of a~waveguide with thin shielding obstacle and Wood's anomalies
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~41
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 385
\pages 98--134
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3902}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 178
\issue 3
\pages 292--312
\crossref{https://doi.org/10.1007/s10958-011-0549-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053525754}
Linking options:
  • https://www.mathnet.ru/eng/znsl3902
  • https://www.mathnet.ru/eng/znsl/v385/p98
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:413
    Full-text PDF :100
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024