Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 385, Pages 54–68 (Mi znsl3899)  

This article is cited in 8 scientific papers (total in 8 papers)

A regularity criterion for axially symmetric solutions to the Navier–Stokes equations

W. Zajączkowskiab

a Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
b Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology, Warsaw, Poland
Full-text PDF (231 kB) Citations (8)
References:
Abstract: We study the axially-symmetric solutions to the Navier–Stokes equations. Assume that the radial component of velocity $(v_r)$ belongs either to $L_\infty(0,T;L_3(\Omega_0))$ or to $v_r/r$ to $L_\infty(0,T;L_{3/2}(\Omega_0))$, where $\Omega_0$ is some neighbourhood of the axis of symmetry. Assume additionally that there exist subdomains $\Omega_k$, $k=1,\dots,N$, such that $\Omega_0\subset\bigcup^N_{k=1}\Omega_k$ and assume that there exist constants $\alpha_1,\alpha_2$ such that either $\big\|v_r\big\|_{L_\infty(0,T;L_3(\Omega_k))}\le\alpha_1$ or $\big\|\frac{v_r}r\Big\|_{L_\infty(0,T;L_{3/2}(\Omega_k))}\le\alpha_2$ for $k=1,\dots,N$. Then the weak solution becomes strong ($v\in W_2^{2,1}(\Omega\times(0,T))$, $\nabla p\in L_2(\Omega\times(0,T))$). Bibl. 28 titles.
Key words and phrases: Navier–Stokes equations, axially symmetric solutions, regularity criterions.
Received: 20.11.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 178, Issue 3, Pages 265–273
DOI: https://doi.org/10.1007/s10958-011-0546-9
Bibliographic databases:
Document Type: Article
UDC: 517
Language: English
Citation: W. Zajączkowski, “A regularity criterion for axially symmetric solutions to the Navier–Stokes equations”, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Zap. Nauchn. Sem. POMI, 385, POMI, St. Petersburg, 2010, 54–68; J. Math. Sci. (N. Y.), 178:3 (2011), 265–273
Citation in format AMSBIB
\Bibitem{Zaj10}
\by W.~Zaj{\k a}czkowski
\paper A regularity criterion for axially symmetric solutions to the Navier--Stokes equations
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~41
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 385
\pages 54--68
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3899}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 178
\issue 3
\pages 265--273
\crossref{https://doi.org/10.1007/s10958-011-0546-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053474910}
Linking options:
  • https://www.mathnet.ru/eng/znsl3899
  • https://www.mathnet.ru/eng/znsl/v385/p54
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :69
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024