Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 385, Pages 5–17 (Mi znsl3897)  

This article is cited in 6 scientific papers (total in 6 papers)

A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation

M. Bildhauer, M. Fuchs

Universität des Saarlandes, Fachbereich 6.1 Mathematik, Saarbrücken, Germany
Full-text PDF (192 kB) Citations (6)
References:
Abstract: We discuss variational integrals with density having linear growth on spaces of vector valued $BV$-functions and prove $\operatorname{Im}(u)\subset K$ for minimizers $u$ provided that the boundary data take their values in the closed convex set $K$ assuming in addition that the integrand satisfies natural structure conditions. Bibl. 14 titles.
Key words and phrases: functions of bounded variation, linear growth problems, minimizers, convex hull property, maximum principle.
Received: 30.05.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 178, Issue 3, Pages 235–242
DOI: https://doi.org/10.1007/s10958-011-0544-y
Bibliographic databases:
Document Type: Article
UDC: 517
Language: English
Citation: M. Bildhauer, M. Fuchs, “A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation”, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Zap. Nauchn. Sem. POMI, 385, POMI, St. Petersburg, 2010, 5–17; J. Math. Sci. (N. Y.), 178:3 (2011), 235–242
Citation in format AMSBIB
\Bibitem{BilFuc10}
\by M.~Bildhauer, M.~Fuchs
\paper A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~41
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 385
\pages 5--17
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3897}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 178
\issue 3
\pages 235--242
\crossref{https://doi.org/10.1007/s10958-011-0544-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053576815}
Linking options:
  • https://www.mathnet.ru/eng/znsl3897
  • https://www.mathnet.ru/eng/znsl/v385/p5
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :77
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024