|
Zapiski Nauchnykh Seminarov POMI, 2010, Volume 385, Pages 5–17
(Mi znsl3897)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation
M. Bildhauer, M. Fuchs Universität des Saarlandes, Fachbereich 6.1 Mathematik, Saarbrücken, Germany
Abstract:
We discuss variational integrals with density having linear growth on spaces of vector valued $BV$-functions and prove $\operatorname{Im}(u)\subset K$ for minimizers $u$ provided that the boundary data take their values in the closed convex set $K$ assuming in addition that the integrand satisfies natural structure conditions. Bibl. 14 titles.
Key words and phrases:
functions of bounded variation, linear growth problems, minimizers, convex hull property, maximum principle.
Received: 30.05.2010
Citation:
M. Bildhauer, M. Fuchs, “A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation”, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Zap. Nauchn. Sem. POMI, 385, POMI, St. Petersburg, 2010, 5–17; J. Math. Sci. (N. Y.), 178:3 (2011), 235–242
Linking options:
https://www.mathnet.ru/eng/znsl3897 https://www.mathnet.ru/eng/znsl/v385/p5
|
Statistics & downloads: |
Abstract page: | 215 | Full-text PDF : | 78 | References: | 42 |
|