Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 384, Pages 291–309 (Mi znsl3896)  

This article is cited in 3 scientific papers (total in 3 papers)

On delay and asymmetry points of one-dimensional semi-Markov diffusion processes

B. P. Harlamov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (224 kB) Citations (3)
References:
Abstract: A homogeneous linear differential equation of the second order is considered. For an open interval where the equation is treated a family of operators of the Dirichlet problem on the set of all subintervals is said to be a generalized semi-group due to its special property. Let the equation has meaning on each of two disjoint intervals with a common boundary point $z$. The extension of the corresponding two semi-groups of operators to a semi-group of operators corresponding to the union of these intervals and the point $z$ is shown to be not unique. It is determined by two arbitrary constants. In order to interpret these arbitrary constants we use a one-dimensional locally Markov diffusion process with special properties of passage of the point $z$. One of these arbitrary constants determines a delay of the process at the point $z$, and the second one induces an asymmetry of the process with respect to $z$. The two extremal meanings of the latter constant, 0 and $\infty$, determine reflection of the process from the point $z$ while going to the point from the left and from the right, respectively. Bibl. 4 titles.
Key words and phrases: diffusion process, semi-Markov process, differential equation, Dirichlet problem, semi-group, reflection, deletion, asymmetry, stationary.
Received: 09.11.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 176, Issue 2, Pages 270–280
DOI: https://doi.org/10.1007/s10958-011-0417-4
Bibliographic databases:
Document Type: Article
UDC: 519
Language: Russian
Citation: B. P. Harlamov, “On delay and asymmetry points of one-dimensional semi-Markov diffusion processes”, Probability and statistics. Part 16, Zap. Nauchn. Sem. POMI, 384, POMI, St. Petersburg, 2010, 291–309; J. Math. Sci. (N. Y.), 176:2 (2011), 270–280
Citation in format AMSBIB
\Bibitem{Har10}
\by B.~P.~Harlamov
\paper On delay and asymmetry points of one-dimensional semi-Markov diffusion processes
\inbook Probability and statistics. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 384
\pages 291--309
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3896}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 176
\issue 2
\pages 270--280
\crossref{https://doi.org/10.1007/s10958-011-0417-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959567629}
Linking options:
  • https://www.mathnet.ru/eng/znsl3896
  • https://www.mathnet.ru/eng/znsl/v384/p291
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :56
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024