Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 384, Pages 105–153 (Mi znsl3887)  

This article is cited in 4 scientific papers (total in 4 papers)

Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms

F. Götzea, A. Yu. Zaitsevb

a Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany
b St. Petersburg Branch Steklov Mathematical Institute, St. Petersburg, Russia
Full-text PDF (460 kB) Citations (4)
References:
Abstract: Let $X,X_1,X_2,\dots$ be i.i.d. $\mathbb R^d$-valued real random vectors. Assume that $\mathbf EX=0$ and that $X$ has a non-degenerate distribution. Let $G$ be a mean zero Gaussian random vector with the same covariance operator as that of $X$. We investigate the distributions of non-degenerate quadratic forms $\mathbb Q[S_N]$ of the normalized sums $S_N=N^{-1/2}(X_1+\dots+X_N)$ and show that, without any additional conditions, for any $a\in\mathbb R^d$,
$$ \Delta_N^{(a)}\stackrel{\mathrm{def}}=\sup_x\bigl|\mathbf P\bigl\{\mathbb Q[S_N-a]\le x\bigr\}-\mathbf P\bigl\{\mathbb Q[G-a]\le x\bigr\}-E_a(x)\bigr|=\mathcal O\bigl(N^{-1}\bigr), $$
provided that $d\ge5$ and $\mathbf E\left\|X\right\|^4<\infty$. Here $E_a(x)$ is the Edgeworth type correction of order $\mathcal O\bigl(N^{-1/2}\bigr)$. Furthermore, we provide explicit bounds of order $\mathcal O\bigl(N^{-1}\bigr)$ for $\Delta_N^{(a)}$ and for the concentration function of the random variable $\mathbb Q[S_N+a]$, $a\in\mathbb R^d$. Our results extend the corresponding results of Bentkus and Götze (1997) ($d\ge9$) to the case $d\ge5$. Bibl. 35 titles.
Key words and phrases: Central Limit Theorem, quadratic forms, concentration inequalities, convergence rates.
Received: 12.11.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 176, Issue 2, Pages 162–189
DOI: https://doi.org/10.1007/s10958-011-0408-5
Bibliographic databases:
Document Type: Article
UDC: 519
Language: Russian
Citation: F. Götze, A. Yu. Zaitsev, “Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms”, Probability and statistics. Part 16, Zap. Nauchn. Sem. POMI, 384, POMI, St. Petersburg, 2010, 105–153; J. Math. Sci. (N. Y.), 176:2 (2011), 162–189
Citation in format AMSBIB
\Bibitem{GotZai10}
\by F.~G\"otze, A.~Yu.~Zaitsev
\paper Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms
\inbook Probability and statistics. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 384
\pages 105--153
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3887}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 176
\issue 2
\pages 162--189
\crossref{https://doi.org/10.1007/s10958-011-0408-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959559903}
Linking options:
  • https://www.mathnet.ru/eng/znsl3887
  • https://www.mathnet.ru/eng/znsl/v384/p105
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :78
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024