|
Zapiski Nauchnykh Seminarov POMI, 2010, Volume 383, Pages 193–203
(Mi znsl3881)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On the distribution of integral points on cones
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let $r_k(n)$ denote the number of representations of a positive integer $n$ as the sum of $k$ squares. We prove that
$$
\sum_{n\le x}r^2_3(n)=Cx^2+O\Big(x^\frac32\big(\log x\big)^\frac72\Big),
$$
where $C>0$ is a certain constant, and that
$$
\sum_{n\le x}r^2_4(n)=32\zeta(3)x^3+O\Big(x^2\big(\log x\big)^\frac53\Big).
$$
Bibl. 14 titles.
Key words and phrases:
lattice point, sum of squares, Jacobi symbol.
Received: 26.04.2010
Citation:
O. M. Fomenko, “On the distribution of integral points on cones”, Analytical theory of numbers and theory of functions. Part 25, Zap. Nauchn. Sem. POMI, 383, POMI, St. Petersburg, 2010, 193–203; J. Math. Sci. (N. Y.), 178:2 (2011), 227–233
Linking options:
https://www.mathnet.ru/eng/znsl3881 https://www.mathnet.ru/eng/znsl/v383/p193
|
Statistics & downloads: |
Abstract page: | 222 | Full-text PDF : | 77 | References: | 55 |
|