|
Zapiski Nauchnykh Seminarov POMI, 2010, Volume 383, Pages 179–192
(Mi znsl3880)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Fractional moments of automorphic $L$-functions. II
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let $f(z)$ be a holomorphic Hecke eigencuspform of even weight $\varkappa\ge12$ for $\mathrm{SL}(2,\mathbb Z)$. We consider the automorphic $L$-functions $L(s,f)$ (Hecke's $L$-function of $f$) and $L(s,\mathrm{sym}^2f)$ (Shimura's symmetric square $L$-function of $f$). Under the Riemann hypothesis for
$L(s,\mathrm{sym}^2f)$, we prove the following asymptotic formula as $T\to\infty$
$$
\int^T_1\big|L(\sigma+it,\mathrm{sym}^2f)\big|^{2k}\,dt=C\cdot T+O\left(T^{1-(2\sigma-1)/\{2(3-2\sigma)\}+\varepsilon}\right),
$$
where $k>0$ and $\frac12<\sigma<1$.
We obtain an analogous result for $L(s,f)$ conditionally and the asymptotics
$$
\int^T_1\big|L(\sigma+it,f)\big|^{2k}\,dt\sim C_1\cdot T,\qquad0<k<1,
$$
unconditionally. Bibl. 11 titles.
Key words and phrases:
automorphic $L$-function, critical strip, fractional moment.
Received: 26.04.2010
Citation:
O. M. Fomenko, “Fractional moments of automorphic $L$-functions. II”, Analytical theory of numbers and theory of functions. Part 25, Zap. Nauchn. Sem. POMI, 383, POMI, St. Petersburg, 2010, 179–192; J. Math. Sci. (N. Y.), 178:2 (2011), 219–226
Linking options:
https://www.mathnet.ru/eng/znsl3880 https://www.mathnet.ru/eng/znsl/v383/p179
|
Statistics & downloads: |
Abstract page: | 297 | Full-text PDF : | 69 | References: | 48 |
|