Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 383, Pages 179–192 (Mi znsl3880)  

This article is cited in 2 scientific papers (total in 2 papers)

Fractional moments of automorphic $L$-functions. II

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (215 kB) Citations (2)
References:
Abstract: Let $f(z)$ be a holomorphic Hecke eigencuspform of even weight $\varkappa\ge12$ for $\mathrm{SL}(2,\mathbb Z)$. We consider the automorphic $L$-functions $L(s,f)$ (Hecke's $L$-function of $f$) and $L(s,\mathrm{sym}^2f)$ (Shimura's symmetric square $L$-function of $f$). Under the Riemann hypothesis for $L(s,\mathrm{sym}^2f)$, we prove the following asymptotic formula as $T\to\infty$
$$ \int^T_1\big|L(\sigma+it,\mathrm{sym}^2f)\big|^{2k}\,dt=C\cdot T+O\left(T^{1-(2\sigma-1)/\{2(3-2\sigma)\}+\varepsilon}\right), $$
where $k>0$ and $\frac12<\sigma<1$.
We obtain an analogous result for $L(s,f)$ conditionally and the asymptotics
$$ \int^T_1\big|L(\sigma+it,f)\big|^{2k}\,dt\sim C_1\cdot T,\qquad0<k<1, $$
unconditionally. Bibl. 11 titles.
Key words and phrases: automorphic $L$-function, critical strip, fractional moment.
Received: 26.04.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 178, Issue 2, Pages 219–226
DOI: https://doi.org/10.1007/s10958-011-0541-1
Bibliographic databases:
Document Type: Article
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “Fractional moments of automorphic $L$-functions. II”, Analytical theory of numbers and theory of functions. Part 25, Zap. Nauchn. Sem. POMI, 383, POMI, St. Petersburg, 2010, 179–192; J. Math. Sci. (N. Y.), 178:2 (2011), 219–226
Citation in format AMSBIB
\Bibitem{Fom10}
\by O.~M.~Fomenko
\paper Fractional moments of automorphic $L$-functions.~II
\inbook Analytical theory of numbers and theory of functions. Part~25
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 383
\pages 179--192
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3880}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 178
\issue 2
\pages 219--226
\crossref{https://doi.org/10.1007/s10958-011-0541-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053525751}
Linking options:
  • https://www.mathnet.ru/eng/znsl3880
  • https://www.mathnet.ru/eng/znsl/v383/p179
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :69
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024