|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 323, Pages 215–222
(Mi znsl388)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Existence of nonnegative solutions of singular boundary-value problems for second-order ordinary differential equations
M. N. Yakovlev St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
It is proved that the boundary-value problem
$$
-u''+p(t)u+q(t)u^n=f(t), \quad u(a)=u(b)=0, \quad n\ge 2,
$$
has a unique nonnegative solution if the following conditions are fulfilled:
\begin{gather*}
0\le q (t)[(b-t)(t-a)]^{\frac{n+1}{2}}\in L(a,b); \quad 0\le f(t)\sqrt{(b-t)(t-a)}\in L(a,b);
\\
1-\frac1{b-a}\int^{b}_{a}p^-(t)(t-a)(b-t)dt>0.
\end{gather*}
Bibliography: 2 titles.
Received: 23.05.2005
Citation:
M. N. Yakovlev, “Existence of nonnegative solutions of singular boundary-value problems for second-order ordinary differential equations”, Computational methods and algorithms. Part XVIII, Zap. Nauchn. Sem. POMI, 323, POMI, St. Petersburg, 2005, 215–222; J. Math. Sci. (N. Y.), 137:3 (2006), 4879–4884
Linking options:
https://www.mathnet.ru/eng/znsl388 https://www.mathnet.ru/eng/znsl/v323/p215
|
|