Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 323, Pages 215–222 (Mi znsl388)  

This article is cited in 1 scientific paper (total in 1 paper)

Existence of nonnegative solutions of singular boundary-value problems for second-order ordinary differential equations

M. N. Yakovlev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (136 kB) Citations (1)
References:
Abstract: It is proved that the boundary-value problem
$$ -u''+p(t)u+q(t)u^n=f(t), \quad u(a)=u(b)=0, \quad n\ge 2, $$
has a unique nonnegative solution if the following conditions are fulfilled:
\begin{gather*} 0\le q (t)[(b-t)(t-a)]^{\frac{n+1}{2}}\in L(a,b); \quad 0\le f(t)\sqrt{(b-t)(t-a)}\in L(a,b); \\ 1-\frac1{b-a}\int^{b}_{a}p^-(t)(t-a)(b-t)dt>0. \end{gather*}
Bibliography: 2 titles.
Received: 23.05.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 137, Issue 3, Pages 4879–4884
DOI: https://doi.org/10.1007/s10958-006-0285-5
Bibliographic databases:
UDC: 519
Language: Russian
Citation: M. N. Yakovlev, “Existence of nonnegative solutions of singular boundary-value problems for second-order ordinary differential equations”, Computational methods and algorithms. Part XVIII, Zap. Nauchn. Sem. POMI, 323, POMI, St. Petersburg, 2005, 215–222; J. Math. Sci. (N. Y.), 137:3 (2006), 4879–4884
Citation in format AMSBIB
\Bibitem{Yak05}
\by M.~N.~Yakovlev
\paper Existence of nonnegative solutions of singular boundary-value problems for second-order ordinary differential equations
\inbook Computational methods and algorithms. Part~XVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 323
\pages 215--222
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl388}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2160316}
\zmath{https://zbmath.org/?q=an:1094.34509}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 137
\issue 3
\pages 4879--4884
\crossref{https://doi.org/10.1007/s10958-006-0285-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746817057}
Linking options:
  • https://www.mathnet.ru/eng/znsl388
  • https://www.mathnet.ru/eng/znsl/v323/p215
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :36
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024