Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 382, Pages 82–103 (Mi znsl3863)  

This article is cited in 7 scientific papers (total in 7 papers)

Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory

L. Yu. Kolotilina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (235 kB) Citations (7)
References:
Abstract: Let $A=D_A+B$ be a block $r\times r$, $r\ge2$, Hermitian matrix of order $n$, where $D_A$ is the block diagonal part of $A$. The main results of the paper are Theorems 2.1 and 2.2, which state the sharp inequalities
$$ \lambda_1(A)\ge\lambda_1(D_A+\xi B)\quad\text{and}\quad\lambda_n(A)\le\lambda_n(D_A+\xi B),\qquad-\frac1{r-1}\le\xi\le1, $$
and analyze the equality cases. Some implications of these results are indicated. As applications, matrices occurring in spectral graph theory are considered, and new lower bounds on the chromatic number of a graph are obtained. Bibl. 7 titles.
Key words and phrases: block Hermitian matrix, extreme eigenvalues, spread of a matrix, graph, adjacency matrix, Laplacian, signless Laplacian, chromatic number.
Received: 23.09.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 176, Issue 1, Pages 44–56
DOI: https://doi.org/10.1007/s10958-011-0392-9
Bibliographic databases:
Document Type: Article
UDC: 512.643
Language: Russian
Citation: L. Yu. Kolotilina, “Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory”, Computational methods and algorithms. Part XXIII, Zap. Nauchn. Sem. POMI, 382, POMI, St. Petersburg, 2010, 82–103; J. Math. Sci. (N. Y.), 176:1 (2011), 44–56
Citation in format AMSBIB
\Bibitem{Kol10}
\by L.~Yu.~Kolotilina
\paper Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory
\inbook Computational methods and algorithms. Part~XXIII
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 382
\pages 82--103
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3863}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 176
\issue 1
\pages 44--56
\crossref{https://doi.org/10.1007/s10958-011-0392-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958255687}
Linking options:
  • https://www.mathnet.ru/eng/znsl3863
  • https://www.mathnet.ru/eng/znsl/v382/p82
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:331
    Full-text PDF :90
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024