|
Zapiski Nauchnykh Seminarov POMI, 2010, Volume 382, Pages 60–70
(Mi znsl3861)
|
|
|
|
On conjugate-normal $(T+H)$-circulants and skew-circulants
Kh. D. Ikramova, V. N. Chugunovb a Moscow State University, Moscow, Russia
b Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
Abstract:
A matrix $A$ is called a $(T+H)$-circulant (skew-circulant) if $A$ can be represented as a sum of a conventional (that is, Toeplitz) and a ankel circulants (respectively, skew-circulants). A complete description of the sets of conjugate-normal $(T+H)$-circulants and skew-circulants is given. Bibl. 3 titles.
Key words and phrases:
Toeplitz matrix, Hankel matrix, $(T+H)$-matrix, conjugate-normal matrix, circulant, Hankel circulant, $\phi$-circulant, $(T+H)$-circulant.
Received: 19.01.2010
Citation:
Kh. D. Ikramov, V. N. Chugunov, “On conjugate-normal $(T+H)$-circulants and skew-circulants”, Computational methods and algorithms. Part XXIII, Zap. Nauchn. Sem. POMI, 382, POMI, St. Petersburg, 2010, 60–70; J. Math. Sci. (N. Y.), 176:1 (2011), 32–37
Linking options:
https://www.mathnet.ru/eng/znsl3861 https://www.mathnet.ru/eng/znsl/v382/p60
|
Statistics & downloads: |
Abstract page: | 222 | Full-text PDF : | 55 | References: | 42 |
|