Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 382, Pages 15–37 (Mi znsl3857)  

This article is cited in 2 scientific papers (total in 2 papers)

Embedded spaces and wavelets on a manifold

Yu. K. Demjanovich

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (293 kB) Citations (2)
References:
Abstract: Simple methods for constructing systems of embedded spline spaces on a manifold are suggested, and wavelet decompositions of such systems are discussed. The results obtained are applied to constructing embedded spline spaces of Lagrange type. Bibl. 8 titles.
Key words and phrases: splines, wavelets on a manifold, approximation relations, caliber relations, embedded spaces.
Received: 08.11.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 176, Issue 1, Pages 7–19
DOI: https://doi.org/10.1007/s10958-011-0386-7
Bibliographic databases:
Document Type: Article
UDC: 519
Language: Russian
Citation: Yu. K. Demjanovich, “Embedded spaces and wavelets on a manifold”, Computational methods and algorithms. Part XXIII, Zap. Nauchn. Sem. POMI, 382, POMI, St. Petersburg, 2010, 15–37; J. Math. Sci. (N. Y.), 176:1 (2011), 7–19
Citation in format AMSBIB
\Bibitem{Dem10}
\by Yu.~K.~Demjanovich
\paper Embedded spaces and wavelets on a~manifold
\inbook Computational methods and algorithms. Part~XXIII
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 382
\pages 15--37
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3857}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 176
\issue 1
\pages 7--19
\crossref{https://doi.org/10.1007/s10958-011-0386-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958288342}
Linking options:
  • https://www.mathnet.ru/eng/znsl3857
  • https://www.mathnet.ru/eng/znsl/v382/p15
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :56
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024