|
Zapiski Nauchnykh Seminarov POMI, 2010, Volume 381, Pages 5–30
(Mi znsl3850)
|
|
|
|
Chromatic numbers of layered graphs with bounded maximal clique
S. L. Berlov Physical and Mathematical Lyceum No. 239, St. Petersburg, Russia
Abstract:
A graph is called $n$-layered if the set of its vertices is a union of pairwise nonintersected $n$-cliques. We estimate chromatic numbers of $n$-layered graphs without $(n+1)$-cliques. Bibl. 10 titles.
Key words and phrases:
chromatic number, clique, clique number, Hall's theorem.
Received: 10.11.2010
Citation:
S. L. Berlov, “Chromatic numbers of layered graphs with bounded maximal clique”, Combinatorics and graph theory. Part II, Zap. Nauchn. Sem. POMI, 381, POMI, St. Petersburg, 2010, 5–30; J. Math. Sci. (N. Y.), 179:5 (2011), 579–591
Linking options:
https://www.mathnet.ru/eng/znsl3850 https://www.mathnet.ru/eng/znsl/v381/p5
|
Statistics & downloads: |
Abstract page: | 257 | Full-text PDF : | 93 | References: | 32 |
|