Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 323, Pages 150–163 (Mi znsl385)  

This article is cited in 1 scientific paper (total in 2 paper)

To solving multiparameter problems of algebra. 7. The $PG$-$q$ factorization method and its applications

V. N. Kublanovskaya

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (195 kB) Citations (2)
References:
Abstract: The paper continues the development of rank-factorization methods for solving certain algebraic problems for multiparameter polynomial matrices and introduces a new rank factorization of a $q$-parameter polynomial $m\times n$ matrix $F$ of full row rank (called the $PG$-$q$ factorization) of the form $F=PG$, where $P=\prod\limits^{q-1}_{k=1}\prod\limits^{n_k}_{i=1}\nabla^{(k)}_i$ is the greatest left divisor of $F$; $\nabla^{(k)}_i$ is a regular $(q-k)$-parameter polynomial matrix the characteristic polynomial of which is a primitive polynomial over the ring of polynomials in $q-k-1$ variables, and $G$ is a $q$-parameter polynomial matrix of rank $m$. The $PG$-$q$ algorithm is suggested, and its applications to solving some problems of algebra are presented. Bibliography: 6 titles.
Received: 09.02.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 137, Issue 3, Pages 4844–4851
DOI: https://doi.org/10.1007/s10958-006-0282-8
Bibliographic databases:
UDC: 519
Language: Russian
Citation: V. N. Kublanovskaya, “To solving multiparameter problems of algebra. 7. The $PG$-$q$ factorization method and its applications”, Computational methods and algorithms. Part XVIII, Zap. Nauchn. Sem. POMI, 323, POMI, St. Petersburg, 2005, 150–163; J. Math. Sci. (N. Y.), 137:3 (2006), 4844–4851
Citation in format AMSBIB
\Bibitem{Kub05}
\by V.~N.~Kublanovskaya
\paper To solving multiparameter problems of algebra.~7. The $PG$-$q$ factorization method and its applications
\inbook Computational methods and algorithms. Part~XVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 323
\pages 150--163
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl385}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2160313}
\zmath{https://zbmath.org/?q=an:1117.65321}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 137
\issue 3
\pages 4844--4851
\crossref{https://doi.org/10.1007/s10958-006-0282-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746833230}
Linking options:
  • https://www.mathnet.ru/eng/znsl385
  • https://www.mathnet.ru/eng/znsl/v323/p150
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:280
    Full-text PDF :55
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024