Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 380, Pages 110–131 (Mi znsl3848)  

This article is cited in 1 scientific paper (total in 1 paper)

The point spectrum of water-wave problem in intersecting canals

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (705 kB) Citations (1)
References:
Abstract: Trapped modes are examined on the water surface in two canals which intersect each other at the right angle and have the same symmetric cross-section. These trapped modes correspond to eigenvalues embedded into the continuous spectrum of the Steklov boundary value problem, decay exponentially at infinity, i.e., are localized near the crossing of the canals. A sufficient condition is presented for the existence of such trapped waves. The effect is discussed of the concentration of eigenvalues under a perturbation in the vicinity of the canals crossing by means of the formation of a shoal, a thin water layer. A condensed review of known results on curved, cranked and branched waveguides is given and open questions are formulated. Bibl. 24 titles.
Key words and phrases: surface waves, trapped modes, crossing canals, eigenvalues on continuos spectrum.
Received: 05.06.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 175, Issue 6, Pages 685–697
DOI: https://doi.org/10.1007/s10958-011-0383-x
Bibliographic databases:
Document Type: Article
UDC: 519.958+535.4+531.327.13+517.956.8
Language: Russian
Citation: S. A. Nazarov, “The point spectrum of water-wave problem in intersecting canals”, Mathematical problems in the theory of wave propagation. Part 40, Zap. Nauchn. Sem. POMI, 380, POMI, St. Petersburg, 2010, 110–131; J. Math. Sci. (N. Y.), 175:6 (2011), 685–697
Citation in format AMSBIB
\Bibitem{Naz10}
\by S.~A.~Nazarov
\paper The point spectrum of water-wave problem in intersecting canals
\inbook Mathematical problems in the theory of wave propagation. Part~40
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 380
\pages 110--131
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3848}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 175
\issue 6
\pages 685--697
\crossref{https://doi.org/10.1007/s10958-011-0383-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80955177557}
Linking options:
  • https://www.mathnet.ru/eng/znsl3848
  • https://www.mathnet.ru/eng/znsl/v380/p110
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:398
    Full-text PDF :81
    References:93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024