Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 378, Pages 81–110 (Mi znsl3830)  

This article is cited in 18 scientific papers (total in 18 papers)

Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes

G. Olshanskiab

a Institute for Information Transmission Problems, Moscow, Russia
b Independent University of Moscow, Moscow, Russia
References:
Abstract: The Laguerre symmetric functions introduced in the note are indexed by arbitrary partitions and depend on two continuous parameters. The top degree homogeneous component of every Laguerre symmetric function coincides with the Schur function with the same index. Thus, the Laguerre symmetric functions form a two-parameter family of inhomogeneous bases in the algebra of symmetric functions. These new symmetric functions are obtained from the $N$-variate symmetric polynomials of the same name by a procedure of analytic continuation. The Laguerre symmetric functions are eigenvectors of a second order differential operator, which depends on the same two parameters and serves as the infinitesimal generator of an infinite-dimensional diffusion process $X(t)$. The process $X(t)$ admits approximation by some jump processes related to one more new family of symmetric functions, the Meixner symmetric functions.
In equilibrium, the process $X(t)$ can be interpreted as a time-dependent point process on the punctured real line $\mathbb R\setminus\{0\}$, and the point configurations may be interpreted as doubly infinite collections of particles of two opposite charges and with log-gas-type interaction. The dynamical correlation functions of the equilibrium process have determinantal form: they are given by minors of the so-called extended Whittaker kernel, introduced earlier in a paper by Borodin and the author. Bibl. 28 titles.
Key words and phrases: symmetric functions, Schur functions, Laguerre polynomials, Meixner polynomials, diffusion processes, jump processes, point processes, correlation functions, determinantal processes.
Received: 23.08.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 174, Issue 1, Pages 41–57
DOI: https://doi.org/10.1007/s10958-011-0280-3
Bibliographic databases:
Document Type: Article
UDC: 517.587+519.217
Language: English
Citation: G. Olshanski, “Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes”, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Zap. Nauchn. Sem. POMI, 378, POMI, St. Petersburg, 2010, 81–110; J. Math. Sci. (N. Y.), 174:1 (2011), 41–57
Citation in format AMSBIB
\Bibitem{Ols10}
\by G.~Olshanski
\paper Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 378
\pages 81--110
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3830}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 174
\issue 1
\pages 41--57
\crossref{https://doi.org/10.1007/s10958-011-0280-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952818039}
Linking options:
  • https://www.mathnet.ru/eng/znsl3830
  • https://www.mathnet.ru/eng/znsl/v378/p81
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :97
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024