Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 378, Pages 17–31 (Mi znsl3824)  

This article is cited in 6 scientific papers (total in 6 papers)

Indecomposable characters of the group of rational rearrangements of the segment

E. E. Goryachko, F. V. Petrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (645 kB) Citations (6)
References:
Abstract: We present a description of all indecomposable characters of the group of rational rearrangements of the segment. We use the Vershik–Kerov approach consisting in the approximation of indecomposable characters of countable groups by indecomposable characters of finite groups. Bibl. 9 titles.
Key words and phrases: rearrangements of the segment, indecomposable characters, periodic embeddings, Young diagrams, the Murnaghan–Nakayama rule.
Received: 29.09.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 174, Issue 1, Pages 7–14
DOI: https://doi.org/10.1007/s10958-011-0274-1
Bibliographic databases:
Document Type: Article
UDC: 512.547+517.986
Language: Russian
Citation: E. E. Goryachko, F. V. Petrov, “Indecomposable characters of the group of rational rearrangements of the segment”, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Zap. Nauchn. Sem. POMI, 378, POMI, St. Petersburg, 2010, 17–31; J. Math. Sci. (N. Y.), 174:1 (2011), 7–14
Citation in format AMSBIB
\Bibitem{GorPet10}
\by E.~E.~Goryachko, F.~V.~Petrov
\paper Indecomposable characters of the group of rational rearrangements of the segment
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 378
\pages 17--31
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3824}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 174
\issue 1
\pages 7--14
\crossref{https://doi.org/10.1007/s10958-011-0274-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952815596}
Linking options:
  • https://www.mathnet.ru/eng/znsl3824
  • https://www.mathnet.ru/eng/znsl/v378/p17
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :109
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024