|
Zapiski Nauchnykh Seminarov POMI, 2010, Volume 377, Pages 199–216
(Mi znsl3821)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Bounds for the cubic Weyl sum
D. R. Heath-Brown Mathematical Institute, Oxford
Abstract:
Subject to the $abc$-conjecture, we improve the standard Weyl estimate for cubic exponential sums in which the argument is a quadratic irrational. Specifically we show that
$$
\sum_{n\le N}e(\alpha n^3)\ll_{\varepsilon,\alpha}N^{\frac57+\varepsilon}
$$
for any $\varepsilon>0$ and any quadratic irrational $\alpha\in\mathbb R-\mathbb Q$. Classically one would have had the (unconditional) exponent $\frac34+\varepsilon$ for such $\alpha$. Bibl. 5 titles.
Key words and phrases:
cubic Weyl sum, quadratic irrational, van der Corput's method, upper bound, exponential sum.
Received: 21.05.2010
Citation:
D. R. Heath-Brown, “Bounds for the cubic Weyl sum”, Studies in number theory. Part 10, Zap. Nauchn. Sem. POMI, 377, POMI, St. Petersburg, 2010, 199–216; J. Math. Sci. (N. Y.), 171:6 (2010), 813–823
Linking options:
https://www.mathnet.ru/eng/znsl3821 https://www.mathnet.ru/eng/znsl/v377/p199
|
Statistics & downloads: |
Abstract page: | 151 | Full-text PDF : | 57 | References: | 37 |
|