Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 377, Pages 111–140 (Mi znsl3818)  

This article is cited in 15 scientific papers (total in 15 papers)

A survey on Büchi's problem: new presentations and open problems

H. Pastena, T. Pheidasb, X. Vidauxa

a Universidad de Concepción
b University of Crete
References:
Abstract: In a commutative ring with a unit, Büchi sequences are those sequences whose second difference of squares is the constant sequence (2). Sequences of elements $x_n$, satisfying $x_n^2=(x+n)^2$ for some fixed $x$ are Büchi sequences that we call trivial. Since we want to study sequences whose elements do not belong to certain subrings (e.g. for fields of rational functions $F(z)$ over a field $F$, we are interested in sequences that are not over $F$), the concept of trivial sequences may vary. Büchi's Problem for a ring asks, whether there exists a positive integer $M$ such that any Büchi sequence of length $M$ or more is trivial.
We survey the current status of knowledge for Büchi's problem and its analogues for higher-order differences and higher powers. We propose several new and old open problems. We present a few new results and various sketches of proofs of old results (in particular Vojta's conditional proof for the case of integers and a rather detailed proof for the case of polynomial rings in characteristic zero), and present a new and short proof of the positive answer to Büchi's problem over finite fields with $p$ elements (originally proved by Hensley). We discuss applications to logic, which were the initial aim for solving these problems. Bibl. 30 titles.
Key words and phrases: Büchi, “n squares problem”, Diophantine equations, Hilbert's tenth problem, undecidability.
Received: 02.06.2010
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 171, Issue 6, Pages 765–781
DOI: https://doi.org/10.1007/s10958-010-0181-x
Bibliographic databases:
Document Type: Article
UDC: 511.522+510.53
Language: English
Citation: H. Pasten, T. Pheidas, X. Vidaux, “A survey on Büchi's problem: new presentations and open problems”, Studies in number theory. Part 10, Zap. Nauchn. Sem. POMI, 377, POMI, St. Petersburg, 2010, 111–140; J. Math. Sci. (N. Y.), 171:6 (2010), 765–781
Citation in format AMSBIB
\Bibitem{PasPheVid10}
\by H.~Pasten, T.~Pheidas, X.~Vidaux
\paper A survey on B\"uchi's problem: new presentations and open problems
\inbook Studies in number theory. Part~10
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 377
\pages 111--140
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3818}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 171
\issue 6
\pages 765--781
\crossref{https://doi.org/10.1007/s10958-010-0181-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650059119}
Linking options:
  • https://www.mathnet.ru/eng/znsl3818
  • https://www.mathnet.ru/eng/znsl/v377/p111
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:369
    Full-text PDF :137
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024