Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 377, Pages 50–54 (Mi znsl3813)  

This article is cited in 2 scientific papers (total in 2 papers)

Representation theorems for r.e. sets and a conjecture related to Poonen's larges subring of $\mathbb Q$

M. Davisab

a Courant Inst., NYU
b Visting Scholar, Univ. Calif. Berkeley
Full-text PDF (535 kB) Citations (2)
References:
Abstract: It is remarked that unsolvability results can often be extended to yield novel “representation” theorems for the set of all recursively enumerable sets. In particular it is shown that analysis of the proof of the unsolvability of Hilbert's 10th Problem over Poonen's large subring of $\mathbb Q$ can provide such a theorem. Moreover, applying that theorem to the case of a simple set leads to a conjecture whose truth would imply the unsolvability of Hilbert's 10th Problem over $\mathbb Q$. Bibl. 7 titles.
Key words and phrases: simple set, Poonen, Hilbert's tenth problem for the rational numbers.
Received: 10.05.2010
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 171, Issue 6, Pages 728–730
DOI: https://doi.org/10.1007/s10958-010-0176-7
Bibliographic databases:
Document Type: Article
UDC: 510.5+511.5
Language: English
Citation: M. Davis, “Representation theorems for r.e. sets and a conjecture related to Poonen's larges subring of $\mathbb Q$”, Studies in number theory. Part 10, Zap. Nauchn. Sem. POMI, 377, POMI, St. Petersburg, 2010, 50–54; J. Math. Sci. (N. Y.), 171:6 (2010), 728–730
Citation in format AMSBIB
\Bibitem{Dav10}
\by M.~Davis
\paper Representation theorems for r.e. sets and a~conjecture related to Poonen's larges subring of~$\mathbb Q$
\inbook Studies in number theory. Part~10
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 377
\pages 50--54
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3813}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 171
\issue 6
\pages 728--730
\crossref{https://doi.org/10.1007/s10958-010-0176-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650049137}
Linking options:
  • https://www.mathnet.ru/eng/znsl3813
  • https://www.mathnet.ru/eng/znsl/v377/p50
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :56
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024