|
Zapiski Nauchnykh Seminarov POMI, 2010, Volume 377, Pages 26–43
(Mi znsl3811)
|
|
|
|
This article is cited in 25 scientific papers (total in 25 papers)
Singular del Pezzo surfaces that are equivariant compactifications
U. Derenthala, D. Loughranb a Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
b Department of Mathematics, University Walk, Bristol, UK
Abstract:
We determine which singular del Pezzo surfaces are equivariant compactifications of $\mathbb G_\mathrm a^2$, to assist with proofs of Manin's conjecture for such surfaces. Additionally, we give an example of a singular quartic del Pezzo surface that is an equivariant compactification of $\mathbb G_\mathrm a\rtimes\mathbb G_\mathrm m$. Bibl. 32 titles.
Key words and phrases:
del Pezzo surfaces, rational points, Manin's conjecture, equivariant compactifications, Dynkin diagrams, blow-up.
Received: 09.06.2010
Citation:
U. Derenthal, D. Loughran, “Singular del Pezzo surfaces that are equivariant compactifications”, Studies in number theory. Part 10, Zap. Nauchn. Sem. POMI, 377, POMI, St. Petersburg, 2010, 26–43; J. Math. Sci. (N. Y.), 171:6 (2010), 714–724
Linking options:
https://www.mathnet.ru/eng/znsl3811 https://www.mathnet.ru/eng/znsl/v377/p26
|
Statistics & downloads: |
Abstract page: | 257 | Full-text PDF : | 77 | References: | 49 |
|