|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 323, Pages 50–56
(Mi znsl380)
|
|
|
|
On the 2-norm distance from a normal matrix to the set of matrices with a multiple zero eigenvalue
Kh. D. Ikramova, A. M. Nazarib a M. V. Lomonosov Moscow State University
b Arak University
Abstract:
An elementary proof is given for a formula for the 2-norm distance from a normal matrix $A$ to the set of matrices with a multiple zero eigenvalue. Earlier, the authors obtained this formula as an implication of a nontrivial result due to A. N. Malyshev.
Received: 06.01.2005
Citation:
Kh. D. Ikramov, A. M. Nazari, “On the 2-norm distance from a normal matrix to the set of matrices with a multiple zero eigenvalue”, Computational methods and algorithms. Part XVIII, Zap. Nauchn. Sem. POMI, 323, POMI, St. Petersburg, 2005, 50–56; J. Math. Sci. (N. Y.), 137:3 (2006), 4789–4793
Linking options:
https://www.mathnet.ru/eng/znsl380 https://www.mathnet.ru/eng/znsl/v323/p50
|
|