Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 351, Pages 253–258 (Mi znsl38)  

This article is cited in 1 scientific paper (total in 1 paper)

The Lipschitz property of the quantile functions on spaces of random variables

V. N. Sudakov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (131 kB) Citations (1)
References:
Abstract: It is proved that the quantile functions on the space of random variables obey the Lipschitz condition with the constant 1 with respect to any norm majorizing $L^\infty$-norm. The random variables considered need not to belong this $L^\infty$-space.
Received: 23.11.2007
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 152, Issue 6, Pages 941–943
DOI: https://doi.org/10.1007/s10958-008-9112-5
Bibliographic databases:
UDC: 519.21
Language: Russian
Citation: V. N. Sudakov, “The Lipschitz property of the quantile functions on spaces of random variables”, Probability and statistics. Part 12, Zap. Nauchn. Sem. POMI, 351, POMI, St. Petersburg, 2007, 253–258; J. Math. Sci. (N. Y.), 152:6 (2008), 941–943
Citation in format AMSBIB
\Bibitem{Sud07}
\by V.~N.~Sudakov
\paper The Lipschitz property of the quantile functions on spaces of random variables
\inbook Probability and statistics. Part~12
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 351
\pages 253--258
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl38}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2008
\vol 152
\issue 6
\pages 941--943
\crossref{https://doi.org/10.1007/s10958-008-9112-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55049119880}
Linking options:
  • https://www.mathnet.ru/eng/znsl38
  • https://www.mathnet.ru/eng/znsl/v351/p253
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :145
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024