|
Zapiski Nauchnykh Seminarov LOMI, 1978, Volume 75, Pages 154–158
(Mi znsl3796)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Center of the semigroup algebra of a finite inverse semigroup over the field of complex numbers
A. V. Rukolaine
Abstract:
In the semigroup algebra $A$ of a finite inverse semigroup $S$ over the field of complex numbers to an indempotent $e$ there is assigned the sum $\sigma(e)=e+\sum(-1)^ke_{i_1}\cdots e_{i_k}$, where $e_1,\dots,e_m$ are maximal preidempotents of the idempotent $e$, and the summation goes over all nonempty subsets $\{i_1,\dots,i_k\}$ of the set $\{1,\dots,m\}$. Then for any class $\mathscr K$ of conjugate group elements of the semigroup $S$ the element $K=\sum a\cdot\sigma(a^{-1}a)$ (the summation goes over all $a\in\mathscr K$) is a central element of the algebra $A$, and the set $\{K\}$ of all possible such elements is a basis for the center of the algebra $A$. Bibl. 2 titles.
Citation:
A. V. Rukolaine, “Center of the semigroup algebra of a finite inverse semigroup over the field of complex numbers”, Rings and linear groups, Zap. Nauchn. Sem. LOMI, 75, "Nauka", Leningrad. Otdel., Leningrad, 1978, 154–158; J. Soviet Math., 37:2 (1987), 1023–1026
Linking options:
https://www.mathnet.ru/eng/znsl3796 https://www.mathnet.ru/eng/znsl/v75/p154
|
Statistics & downloads: |
Abstract page: | 145 | Full-text PDF : | 40 |
|