Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 323, Pages 47–49 (Mi znsl379)  

On the principal minors of a matrix with a multiple eigenvalue

Kh. D. Ikramov

M. V. Lomonosov Moscow State University
Abstract: The property of a Hermitian $n\times n$ matrix $A$ that all its principal minors of order $n-1$ vanish is shown to be a purely algebraic implication of the fact that the two lowest coefficients of its characteristic polynomial are zero. To prove this assertion, no information on the rank or the eigenvalues of $A$ is required.
Received: 06.04.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 137, Issue 3, Pages 4787–4788
DOI: https://doi.org/10.1007/s10958-006-0276-6
Bibliographic databases:
UDC: 512
Language: Russian
Citation: Kh. D. Ikramov, “On the principal minors of a matrix with a multiple eigenvalue”, Computational methods and algorithms. Part XVIII, Zap. Nauchn. Sem. POMI, 323, POMI, St. Petersburg, 2005, 47–49; J. Math. Sci. (N. Y.), 137:3 (2006), 4787–4788
Citation in format AMSBIB
\Bibitem{Ikr05}
\by Kh.~D.~Ikramov
\paper On the principal minors of a~matrix with a~multiple eigenvalue
\inbook Computational methods and algorithms. Part~XVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 323
\pages 47--49
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl379}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2160307}
\zmath{https://zbmath.org/?q=an:1081.15519}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 137
\issue 3
\pages 4787--4788
\crossref{https://doi.org/10.1007/s10958-006-0276-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746789437}
Linking options:
  • https://www.mathnet.ru/eng/znsl379
  • https://www.mathnet.ru/eng/znsl/v323/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024