Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1978, Volume 75, Pages 43–58 (Mi znsl3785)  

This article is cited in 12 scientific papers (total in 12 papers)

Parabolic subgroups of Chevalley groups over a semilocal ring

N. A. Vavilov
Abstract: Let $G$ be the Chevalley group over a commutative semilocal ring $R$ which is associated with a root system $\Phi$. The parabolic subgroups of $G$ are described in the work. A system $\sigma=(\sigma_\alpha)$ of ideals $\sigma_\alpha$ in $R$ ($\alpha$ runs through all roots of the system $\Phi$) is called a net of ideals in the commutative ring $R$ if $\sigma_\alpha\sigma_\beta\subset\sigma_{\alpha+\beta}$ for all those roots $\alpha$ and $\beta$ for which $\alpha+\beta$ is also a root. A net $\sigma$ is called parabolic if $\sigma_\alpha=R$ for $\alpha>0$. The main theorem: under minor additional assumptions all parabolic subgroups of $G$ are in bijective correspondence with all parabolic nets $\sigma$. The paper is related to two works of K. Suzuki in which the parabolic subgroups of $G$ are described under more stringent conditions. Bibl. 19 titles.
English version:
Journal of Soviet Mathematics, 1987, Volume 37, Issue 2, Pages 942–952
DOI: https://doi.org/10.1007/BF01089086
Bibliographic databases:
Document Type: Article
UDC: 513.6
Language: Russian
Citation: N. A. Vavilov, “Parabolic subgroups of Chevalley groups over a semilocal ring”, Rings and linear groups, Zap. Nauchn. Sem. LOMI, 75, "Nauka", Leningrad. Otdel., Leningrad, 1978, 43–58; J. Soviet Math., 37:2 (1987), 942–952
Citation in format AMSBIB
\Bibitem{Vav78}
\by N.~A.~Vavilov
\paper Parabolic subgroups of Chevalley groups over a~semilocal ring
\inbook Rings and linear groups
\serial Zap. Nauchn. Sem. LOMI
\yr 1978
\vol 75
\pages 43--58
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3785}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0503839}
\zmath{https://zbmath.org/?q=an:0612.20028|0448.20046}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 37
\issue 2
\pages 942--952
\crossref{https://doi.org/10.1007/BF01089086}
Linking options:
  • https://www.mathnet.ru/eng/znsl3785
  • https://www.mathnet.ru/eng/znsl/v75/p43
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :88
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024