|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 323, Pages 34–46
(Mi znsl378)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
On the codimension of the variety of symmetric matrices with multiple eigenvalues
M. Danaa, Kh. D. Ikramovb a University of Kurdistan
b M. V. Lomonosov Moscow State University
Abstract:
According to a result of Wigner and von Neumann, the dimension of the set $\mathcal M$ of $n\times n$ real symmetric matrices with multiple eigenvalues is equal to $N-2$, where $N=n(n+1)/2$. This value is determined by counting the number of free parameters in the spectral decomposition of a matrix. We show that the same dimension is obtained if $\mathcal M$ is interpreted as an algebraic variety.
Received: 06.01.2005
Citation:
M. Dana, Kh. D. Ikramov, “On the codimension of the variety of symmetric matrices with multiple eigenvalues”, Computational methods and algorithms. Part XVIII, Zap. Nauchn. Sem. POMI, 323, POMI, St. Petersburg, 2005, 34–46; J. Math. Sci. (N. Y.), 137:3 (2006), 4780–4786
Linking options:
https://www.mathnet.ru/eng/znsl378 https://www.mathnet.ru/eng/znsl/v323/p34
|
Statistics & downloads: |
Abstract page: | 289 | Full-text PDF : | 98 | References: | 60 |
|