Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 323, Pages 34–46 (Mi znsl378)  

This article is cited in 7 scientific papers (total in 7 papers)

On the codimension of the variety of symmetric matrices with multiple eigenvalues

M. Danaa, Kh. D. Ikramovb

a University of Kurdistan
b M. V. Lomonosov Moscow State University
Full-text PDF (185 kB) Citations (7)
References:
Abstract: According to a result of Wigner and von Neumann, the dimension of the set $\mathcal M$ of $n\times n$ real symmetric matrices with multiple eigenvalues is equal to $N-2$, where $N=n(n+1)/2$. This value is determined by counting the number of free parameters in the spectral decomposition of a matrix. We show that the same dimension is obtained if $\mathcal M$ is interpreted as an algebraic variety.
Received: 06.01.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 137, Issue 3, Pages 4780–4786
DOI: https://doi.org/10.1007/s10958-006-0275-7
Bibliographic databases:
UDC: 512.643
Language: Russian
Citation: M. Dana, Kh. D. Ikramov, “On the codimension of the variety of symmetric matrices with multiple eigenvalues”, Computational methods and algorithms. Part XVIII, Zap. Nauchn. Sem. POMI, 323, POMI, St. Petersburg, 2005, 34–46; J. Math. Sci. (N. Y.), 137:3 (2006), 4780–4786
Citation in format AMSBIB
\Bibitem{DanIkr05}
\by M.~Dana, Kh.~D.~Ikramov
\paper On the codimension of the variety of symmetric matrices with multiple eigenvalues
\inbook Computational methods and algorithms. Part~XVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 323
\pages 34--46
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl378}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2160306}
\zmath{https://zbmath.org/?q=an:1081.15526}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 137
\issue 3
\pages 4780--4786
\crossref{https://doi.org/10.1007/s10958-006-0275-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746797693}
Linking options:
  • https://www.mathnet.ru/eng/znsl378
  • https://www.mathnet.ru/eng/znsl/v323/p34
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:289
    Full-text PDF :98
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024