Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 230, Pages 214–242 (Mi znsl3775)  

This article is cited in 5 scientific papers (total in 5 papers)

Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations in classes of smooth functions

A. P. Oskolkov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: Existence theorems are proved for the solutions of the first and second initial boundary-value problems for the equations of Kelvin–Voight fluids and for the penalized equations of Kelvin-Voight fluids in the smoothness classes $W^r_\infty(\mathbb R^+;W^{2+k}_2(\Omega))$, $W^r_2(\mathbb R^+;W^{2+k}_2(\Omega))$ and $S^r_2(\mathbb R^+;W^{2+k}_2(\Omega))$, $r=1,2$, $k=0,1,2,\dots$, under the condition that the right-hand sides $f(x,t)$ belong to the classes $W^{r-1}_\infty(\mathbb R^+;W^k_2(\Omega))$, $W^{r-1}_2(\mathbb R^+;W^k_2(\Omega)) $ and $S^{r-1}_2(\mathbb R^+;W^k_2(\Omega))$, respectively, and for the solutions of the first and second $T$-periodic boundary-value problems for the same equations in the smoothness classes $W^{r-1}_\infty(\mathbb R;W^{2+k}_2(\Omega))$ and $W^{r-1}_2(0,T;W^{2+k}_2(\Omega))$, $r=1,2$, $k=0,1,2,\dots$, under the condition that $f(x,t)$ are $T$-periodic and belong to the spaces $W^{r-1}_\infty(\mathbb R^+;W^k_2(\Omega))$ and $W^{r-1}_2(0,T;W^k_2(\Omega))$, respectively. It is shown that as $\varepsilon\to0$, the smooth solutions $\{v^\varepsilon\}$ of the perturbed initial boundary-value and $T$-periodic boundary-value problems for the penalized equations of Kelvin–Voight fluids converge to the corresponding smooth solutions $(v,p)$ of the initial boundary-value and $T$-periodic boundary-value problems for the equations of Kelvin–Voight fluids. Bibl. 29 titles.
Received: 15.05.1995
English version:
Journal of Mathematical Sciences (New York), 1998, Volume 91, Issue 2, Pages 2840–2859
DOI: https://doi.org/10.1007/BF02433999
Bibliographic databases:
Document Type: Article
UDC: 517.94
Language: Russian
Citation: A. P. Oskolkov, “Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations in classes of smooth functions”, Mathematical problems in the theory of wave propagation. Part 25, Zap. Nauchn. Sem. POMI, 230, POMI, St. Petersburg, 1995, 214–242; J. Math. Sci. (New York), 91:2 (1998), 2840–2859
Citation in format AMSBIB
\Bibitem{Osk95}
\by A.~P.~Oskolkov
\paper Nonlocal problems for the equations of Kelvin--Voight fluids and their $\varepsilon$-approximations in classes of smooth functions
\inbook Mathematical problems in the theory of wave propagation. Part~25
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 230
\pages 214--242
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3775}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1434278}
\zmath{https://zbmath.org/?q=an:0902.76008|0899.76046}
\transl
\jour J. Math. Sci. (New York)
\yr 1998
\vol 91
\issue 2
\pages 2840--2859
\crossref{https://doi.org/10.1007/BF02433999}
Linking options:
  • https://www.mathnet.ru/eng/znsl3775
  • https://www.mathnet.ru/eng/znsl/v230/p214
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:209
    Full-text PDF :126
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024