Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 323, Pages 24–33 (Mi znsl377)  

This article is cited in 2 scientific papers (total in 2 papers)

On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. II

E. G. Goluzina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (170 kB) Citations (2)
References:
Abstract: The paper studies the region $D_{m,1}(T)$ of values of the system $\{f(z_1),f(z_2),\dots,f(z_m),f(r)\}$, $m\ge1$, where $z_j$ ($j=1,2,\dots,m$) are arbitrary fixed points of the disk $U=\{z:|z|<1\}$ with $\operatorname{Im}z_j\ne0$ ($j=1,2,\ldots,m$), and $r$, $0<r<1$, is fixed, on the class $T$ of functions $f(z)=z+a_2z^2+\cdots$ regular in the disk $U$ and satisfying in the latter the condition $\operatorname{Im}f(z)\operatorname{Im}z>0$ for $\operatorname{Im}z\ne0$. An algebraic characterization of the set $D_{m,1}(T)$ in terms of nonnegative Hermitian forms is given, and all the boundary functions are described. As an implication, the region of values of $f(z_m)$ in the subclass of functions from the class $T$ with prescribed values $f(z_k)$ ($k=1,2,\dots,m-1$) and $f(r)$ is determined.
Received: 13.06.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 137, Issue 3, Pages 4774–4779
DOI: https://doi.org/10.1007/s10958-006-0274-8
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: E. G. Goluzina, “On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. II”, Computational methods and algorithms. Part XVIII, Zap. Nauchn. Sem. POMI, 323, POMI, St. Petersburg, 2005, 24–33; J. Math. Sci. (N. Y.), 137:3 (2006), 4774–4779
Citation in format AMSBIB
\Bibitem{Gol05}
\by E.~G.~Goluzina
\paper On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions.~II
\inbook Computational methods and algorithms. Part~XVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 323
\pages 24--33
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl377}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2160305}
\zmath{https://zbmath.org/?q=an:1093.30009}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 137
\issue 3
\pages 4774--4779
\crossref{https://doi.org/10.1007/s10958-006-0274-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746816115}
Linking options:
  • https://www.mathnet.ru/eng/znsl377
  • https://www.mathnet.ru/eng/znsl/v323/p24
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:321
    Full-text PDF :62
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024