Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 231, Pages 222–244 (Mi znsl3753)  

This article is cited in 2 scientific papers (total in 2 papers)

Topology of manifolds and varieties

The algebra of generalized jacobifields

V. S. Kal'nitskii

Saint-Petersburg State University
Full-text PDF (925 kB) Citations (2)
Abstract: We study the structure of those vector fields on the tangent bundle of an arbitrary smooth manifold which commute with the geodesic vector field defined by an affine connection. The study is restricted to polylinear fields generated by a pair of symmetric pseudotensor fields of type $(k,1)$ and $(k+1,1)$, $k\ge0$, defined on the manifold. We establish an isomorphism between the space of infinitesimal automorphisms of fixed type and the space $\mathfrak h_k$ of the solutions of a partial differential equation generalizing the Jacobi equation for the infinitesimal automorphisms of the connection. It is shown that the spaces $\mathfrak h_k$ are finite-dimensional and form a graduated Lie algebra $\mathfrak h=\bigoplus^\infty_{k=0}\mathfrak h_k$. These algebras are classified in the case of one-dimensional manifolds. It is proved that if the geodesic vector field is complete, then so are the automorphisms corresponding to covariant constant fields of type $(1,1)$. Bibl. 5 titles.
Received: 10.09.1995
English version:
Journal of Mathematical Sciences (New York), 1998, Volume 91, Issue 6, Pages 3476–3491
DOI: https://doi.org/10.1007/BF02434926
Bibliographic databases:
Document Type: Article
UDC: 514.762
Language: Russian
Citation: V. S. Kal'nitskii, “The algebra of generalized jacobifields”, Investigations in topology. Part 8, Zap. Nauchn. Sem. POMI, 231, POMI, St. Petersburg, 1995, 222–244; J. Math. Sci. (New York), 91:6 (1998), 3476–3491
Citation in format AMSBIB
\Bibitem{Kal95}
\by V.~S.~Kal'nitskii
\paper The algebra of generalized jacobifields
\inbook Investigations in topology. Part~8
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 231
\pages 222--244
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3753}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1434296}
\zmath{https://zbmath.org/?q=an:0907.53031|0890.53040}
\transl
\jour J. Math. Sci. (New York)
\yr 1998
\vol 91
\issue 6
\pages 3476--3491
\crossref{https://doi.org/10.1007/BF02434926}
Linking options:
  • https://www.mathnet.ru/eng/znsl3753
  • https://www.mathnet.ru/eng/znsl/v231/p222
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024