Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 231, Pages 180–190 (Mi znsl3748)  

This article is cited in 1 scientific paper (total in 1 paper)

Topology of manifolds and varieties

Estimates of the number of singular points of a complex hypersurface and related questions

O. A. Ivanov, N. Yu. Netsvetaev

Saint-Petersburg State University
Full-text PDF (435 kB) Citations (1)
Abstract: It is well known that the number of isolated singular points of a hypersurface of degree $d$ in $\mathbb CP^m$ does not exceed the Arnol'd number $A_m(d)$, which is defined in combinatorial terms. In the paper it is proved that if $b^\pm_{m-1}(d)$ are the inertia indices of the intersection form of a nonsingular hypersurface of degree $d$ in $\mathbb CP^m$, then the inequality $A_m(d)<\min\{b^+_{m-1}(d),b^-_{m-1}(d)\}$ holds if and only if $(m-5)(d-2)\ge18$ and $(m,d)\ne(7,12)$. The table of the Arnol'd numbers for $3\le m\le14$, $3\le d\le17$ and for $3\le m\le8$, $d=18,19$ is given. Bibl. 6 titles.
Received: 20.04.1994
English version:
Journal of Mathematical Sciences (New York), 1998, Volume 91, Issue 6, Pages 3448–3455
DOI: https://doi.org/10.1007/BF02434921
Bibliographic databases:
Document Type: Article
UDC: 515.164
Language: Russian
Citation: O. A. Ivanov, N. Yu. Netsvetaev, “Estimates of the number of singular points of a complex hypersurface and related questions”, Investigations in topology. Part 8, Zap. Nauchn. Sem. POMI, 231, POMI, St. Petersburg, 1995, 180–190; J. Math. Sci. (New York), 91:6 (1998), 3448–3455
Citation in format AMSBIB
\Bibitem{IvaNet95}
\by O.~A.~Ivanov, N.~Yu.~Netsvetaev
\paper Estimates of the number of singular points of a~complex hypersurface and related questions
\inbook Investigations in topology. Part~8
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 231
\pages 180--190
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3748}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1434291}
\zmath{https://zbmath.org/?q=an:0907.14018|0886.14018}
\transl
\jour J. Math. Sci. (New York)
\yr 1998
\vol 91
\issue 6
\pages 3448--3455
\crossref{https://doi.org/10.1007/BF02434921}
Linking options:
  • https://www.mathnet.ru/eng/znsl3748
  • https://www.mathnet.ru/eng/znsl/v231/p180
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024