Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 324, Pages 247–261 (Mi znsl374)  

Embedding formula for an electromagnetic diffraction problem

A. V. Shanin

M. V. Lomonosov Moscow State University
References:
Abstract: Embedding formulae is a powerful tool enabling one to reduce the dimension of the space of variables for a diffraction problem. Let the scatterer be finite, planar and perfectly conducting. The idea of the method is to substitute the initial problem of diffraction of a plane wave by finding an edge Green's function, i.e., to solve a problem with a sourve located near the edge of a scatterer. Embedding formula is an integral relation connecting the solution of the initial plane wave incidence problem with the edge Green's function. Earlier, the embedding formulae have been derived for acoustic and elasticity problems. Here we derive en embedding formula for an electromagnetic problem.
Received: 01.02.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 138, Issue 2, Pages 5623–5630
DOI: https://doi.org/10.1007/s10958-006-0330-4
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: A. V. Shanin, “Embedding formula for an electromagnetic diffraction problem”, Mathematical problems in the theory of wave propagation. Part 34, Zap. Nauchn. Sem. POMI, 324, POMI, St. Petersburg, 2005, 247–261; J. Math. Sci. (N. Y.), 138:2 (2006), 5623–5630
Citation in format AMSBIB
\Bibitem{Sha05}
\by A.~V.~Shanin
\paper Embedding formula for an electromagnetic diffraction problem
\inbook Mathematical problems in the theory of wave propagation. Part~34
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 324
\pages 247--261
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl374}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2159358}
\zmath{https://zbmath.org/?q=an:1170.78370}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 138
\issue 2
\pages 5623--5630
\crossref{https://doi.org/10.1007/s10958-006-0330-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748565360}
Linking options:
  • https://www.mathnet.ru/eng/znsl374
  • https://www.mathnet.ru/eng/znsl/v324/p247
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024