Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 324, Pages 229–246 (Mi znsl373)  

This article is cited in 2 scientific papers (total in 2 papers)

On propagation of Scholte–Gogoladze surface waves along a fluid-solid interface of arbitrary shape

K. D. Cherednichenkoab

a Saint-Petersburg State University
b St. John's College Oxford
Full-text PDF (243 kB) Citations (2)
References:
Abstract: A high-frequency ray theory is presented for a type of small-amplitude waves (Scholte–Gogoladze waves) localised in a thin layer around an interface between elastic and fluid domains. The interface is assumed to be smooth, with the typical radius of curvature much larger than the excitation wavelength. The technique employed in the work is based on a boundary-layer version of the classical WKB expansion (see V. M. Babich and N. Ya. Kirpichnikova, The boundary-layer method in diffraction problems, Berlin; New York: Springer-Verlag, 1979).
Received: 08.02.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 138, Issue 2, Pages 5613–5622
DOI: https://doi.org/10.1007/s10958-006-0329-x
Bibliographic databases:
UDC: 517.9, 534.2
Language: Russian
Citation: K. D. Cherednichenko, “On propagation of Scholte–Gogoladze surface waves along a fluid-solid interface of arbitrary shape”, Mathematical problems in the theory of wave propagation. Part 34, Zap. Nauchn. Sem. POMI, 324, POMI, St. Petersburg, 2005, 229–246; J. Math. Sci. (N. Y.), 138:2 (2006), 5613–5622
Citation in format AMSBIB
\Bibitem{Che05}
\by K.~D.~Cherednichenko
\paper On propagation of Scholte--Gogoladze surface waves along a fluid-solid interface of arbitrary shape
\inbook Mathematical problems in the theory of wave propagation. Part~34
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 324
\pages 229--246
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl373}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2159357}
\zmath{https://zbmath.org/?q=an:1093.74031}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 138
\issue 2
\pages 5613--5622
\crossref{https://doi.org/10.1007/s10958-006-0329-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748541996}
Linking options:
  • https://www.mathnet.ru/eng/znsl373
  • https://www.mathnet.ru/eng/znsl/v324/p229
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024