|
Zapiski Nauchnykh Seminarov POMI, 1996, Volume 226, Pages 65–68
(Mi znsl3721)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On nonhomogeneous Waring equations
E. P. Golubeva St. Petersburg State University of Telecommunications
Abstract:
It is proved that for an arbitrary positive integer $k$ the equation
$$
n=x^2+y^2+z^3+u^3+v^4+w^{14}+t^{4k+1}
$$
has a positive integer solution for all sufficiently large $n$. Bibl. 6 titles.
Received: 27.11.1995
Citation:
E. P. Golubeva, “On nonhomogeneous Waring equations”, Analytical theory of numbers and theory of functions. Part 13, Zap. Nauchn. Sem. POMI, 226, POMI, St. Petersburg, 1996, 65–68; J. Math. Sci. (New York), 89:1 (1998), 955–957
Linking options:
https://www.mathnet.ru/eng/znsl3721 https://www.mathnet.ru/eng/znsl/v226/p65
|
Statistics & downloads: |
Abstract page: | 118 | Full-text PDF : | 46 |
|