Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1996, Volume 226, Pages 14–36 (Mi znsl3717)  

This article is cited in 33 scientific papers (total in 33 papers)

A trace formula for convolution of Hecke series and its applications

V. A. Bykovskii

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences
Abstract: A trace formula expressing the mean values of the form ($k=2,3,\dots$)
$$ \frac{\Gamma(2k-1)}{(4\pi)^{2k-1}}\sum_f\frac{\lambda_f(d)}{\langle f,f\rangle}\mathcal H_f^{(\chi)}(s_1)\overline{\mathcal H_f^{(\chi)}(\overline s_2)} $$
via certain arithmetic means on the group $\Gamma_0(N_1)$ is proved. Here the sum is taken over a normalized orthogonal basis in the space of holomorphic cusp forms of weight $2k$ with respect to $\Gamma_0(N_1)$. By $\mathcal H_f^{(\chi)}(s)$ we denote the Hecke series of the form $f$, twisted with the primitive character $\chi\pmod{N_2}$, and $\lambda_f(d)$, $(d,N_1,N_2)=1$, are the eigenvalues of the Hecke operators
$$ T_{2k}(d)f(z)=d^{k-1/2}\sum_{d_1d_2=d}d^{-2k}_2\cdot\sum_{m\,(\operatorname{mod}d_2)}f\Biggl(\frac{d_1z+m}{d_2}\Biggr). $$
The trace formula is used for obtaining the estimate
$$ \frac{d^l}{dt^l}\mathcal H_f^{(\chi)}(1/2+it)\ll_{\varepsilon,k,l,N_1}(1+|t|)^{1/2+\varepsilon}N_2^{1/2-1/8+\varepsilon} $$
for the newform $f$ for all $\varepsilon>0$, $l=0,1,2,\dots$. This improves the known result (Duke–Friedlander–Iwaniec, 1993) with upper bound
$$ (1+|t|)^2N_2^{1/2-1/22+\varepsilon} $$
on the right-hand side. As a corollary, we obtain the estimate
$$ c(n)\ll_\varepsilon h^{1/4-1/16+\varepsilon} $$
for the Fourier coefficients of holomorphic cusp forms of weight $k+1/2$, which improves Iwaniec' result (1987) with exponent $1/4-1/28+\varepsilon$. Bibl. 25 titles.
Received: 20.10.1995
English version:
Journal of Mathematical Sciences (New York), 1998, Volume 89, Issue 1, Pages 915–932
DOI: https://doi.org/10.1007/BF02358528
Bibliographic databases:
Document Type: Article
UDC: 511.334+512.754
Language: Russian
Citation: V. A. Bykovskii, “A trace formula for convolution of Hecke series and its applications”, Analytical theory of numbers and theory of functions. Part 13, Zap. Nauchn. Sem. POMI, 226, POMI, St. Petersburg, 1996, 14–36; J. Math. Sci. (New York), 89:1 (1998), 915–932
Citation in format AMSBIB
\Bibitem{Byk96}
\by V.~A.~Bykovskii
\paper A trace formula for convolution of Hecke series and its applications
\inbook Analytical theory of numbers and theory of functions. Part~13
\serial Zap. Nauchn. Sem. POMI
\yr 1996
\vol 226
\pages 14--36
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3717}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1433344}
\zmath{https://zbmath.org/?q=an:0898.11017|0893.11019}
\transl
\jour J. Math. Sci. (New York)
\yr 1998
\vol 89
\issue 1
\pages 915--932
\crossref{https://doi.org/10.1007/BF02358528}
Linking options:
  • https://www.mathnet.ru/eng/znsl3717
  • https://www.mathnet.ru/eng/znsl/v226/p14
  • This publication is cited in the following 33 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:263
    Full-text PDF :91
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024