Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 324, Pages 190–212 (Mi znsl371)  

This article is cited in 2 scientific papers (total in 2 papers)

Paraxial ray theory for Maxwell's equations

J. de Freitasa, M. M. Popovb

a Centro de Pesquisa em Geofisica e Geologia of Universidade Federal da Bahia
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (245 kB) Citations (2)
References:
Abstract: Paraxial ray theory for Maxwell's equations in the case of an inhomogeneous isotropic medium with finite conductivity and smooth interfaces is developed. We show that the ray centered coordinates are suitable for describing amplitudes and polarization of waves in their propagation and reflection/refraction on a smooth interface. Expressions for the geometrical spreading and second order derivatives of the eikonal are obtained in terms of certain solutions of the equations in variations, i.e., equations which describe rays close to the central ray in linear approximation.
Received: 15.10.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 138, Issue 2, Pages 5590–5602
DOI: https://doi.org/10.1007/s10958-006-0327-z
Bibliographic databases:
UDC: 517
Language: English
Citation: J. de Freitas, M. M. Popov, “Paraxial ray theory for Maxwell's equations”, Mathematical problems in the theory of wave propagation. Part 34, Zap. Nauchn. Sem. POMI, 324, POMI, St. Petersburg, 2005, 190–212; J. Math. Sci. (N. Y.), 138:2 (2006), 5590–5602
Citation in format AMSBIB
\Bibitem{De Pop05}
\by J.~de Freitas, M.~M.~Popov
\paper Paraxial ray theory for Maxwell's equations
\inbook Mathematical problems in the theory of wave propagation. Part~34
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 324
\pages 190--212
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl371}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2159355}
\zmath{https://zbmath.org/?q=an:1170.78371}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 138
\issue 2
\pages 5590--5602
\crossref{https://doi.org/10.1007/s10958-006-0327-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748579260}
Linking options:
  • https://www.mathnet.ru/eng/znsl371
  • https://www.mathnet.ru/eng/znsl/v324/p190
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :137
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024