|
Zapiski Nauchnykh Seminarov POMI, 1996, Volume 228, Pages 94–110
(Mi znsl3696)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Homoclinic sums criterion for vanishing of spectral density
M. I. Gordin St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $(X,d)$ be a compact metric space, $T\colon X\to X$ be a homeomorphism satisfying certain suitable hyperbolicity hypothesis and $\mu$ be a Gibbs measure on $X$ relative to $T$. The following statement is proved in the paper.
Let $\lambda$ be a complex number with $|\lambda|=1$ and $f\colon X\to\mathbb C$ be a Hölder continuous function. Then the equality
$$
\sum_{k\in\mathbb Z}\lambda^{-k}\Biggl(\int_Xf(T^kx)\overline f(x)\mu(dx)-\Bigg|\int_Xf(x)\mu(dx)\Bigg|^2\Biggr)=0
$$
holds true if and only if the identity
$$
\sum_{k\in\mathbb Z}\lambda^{-k}(f(T^ky)-f(T^kx))=0
$$
is valid for each $x,y\in X$ with the property that $d(T^kx,T^ky)\xrightarrow[|k|\to\infty]{}0$. Bibl. 11 titles.
Received: 06.10.1995
Citation:
M. I. Gordin, “Homoclinic sums criterion for vanishing of spectral density”, Probability and statistics. Part 1, Zap. Nauchn. Sem. POMI, 228, POMI, St. Petersburg, 1996, 94–110; J. Math. Sci. (New York), 93:3 (1999), 311–320
Linking options:
https://www.mathnet.ru/eng/znsl3696 https://www.mathnet.ru/eng/znsl/v228/p94
|
Statistics & downloads: |
Abstract page: | 101 | Full-text PDF : | 34 |
|