Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1996, Volume 228, Pages 94–110 (Mi znsl3696)  

This article is cited in 1 scientific paper (total in 1 paper)

Homoclinic sums criterion for vanishing of spectral density

M. I. Gordin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (719 kB) Citations (1)
Abstract: Let $(X,d)$ be a compact metric space, $T\colon X\to X$ be a homeomorphism satisfying certain suitable hyperbolicity hypothesis and $\mu$ be a Gibbs measure on $X$ relative to $T$. The following statement is proved in the paper.
Let $\lambda$ be a complex number with $|\lambda|=1$ and $f\colon X\to\mathbb C$ be a Hölder continuous function. Then the equality
$$ \sum_{k\in\mathbb Z}\lambda^{-k}\Biggl(\int_Xf(T^kx)\overline f(x)\mu(dx)-\Bigg|\int_Xf(x)\mu(dx)\Bigg|^2\Biggr)=0 $$
holds true if and only if the identity
$$ \sum_{k\in\mathbb Z}\lambda^{-k}(f(T^ky)-f(T^kx))=0 $$
is valid for each $x,y\in X$ with the property that $d(T^kx,T^ky)\xrightarrow[|k|\to\infty]{}0$. Bibl. 11 titles.
Received: 06.10.1995
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 93, Issue 3, Pages 311–320
DOI: https://doi.org/10.1007/BF02364815
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: M. I. Gordin, “Homoclinic sums criterion for vanishing of spectral density”, Probability and statistics. Part 1, Zap. Nauchn. Sem. POMI, 228, POMI, St. Petersburg, 1996, 94–110; J. Math. Sci. (New York), 93:3 (1999), 311–320
Citation in format AMSBIB
\Bibitem{Gor96}
\by M.~I.~Gordin
\paper Homoclinic sums criterion for vanishing of spectral density
\inbook Probability and statistics. Part~1
\serial Zap. Nauchn. Sem. POMI
\yr 1996
\vol 228
\pages 94--110
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3696}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1449850}
\zmath{https://zbmath.org/?q=an:0924.28012}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 93
\issue 3
\pages 311--320
\crossref{https://doi.org/10.1007/BF02364815}
Linking options:
  • https://www.mathnet.ru/eng/znsl3696
  • https://www.mathnet.ru/eng/znsl/v228/p94
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:101
    Full-text PDF :34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024