|
Zapiski Nauchnykh Seminarov POMI, 1996, Volume 232, Pages 199–212
(Mi znsl3686)
|
|
|
|
Approximation on limit compacta of Kleinian groups
N. A. Shirokov St. Petersburg State Electrotechnical University
Abstract:
Let $\Gamma$ be a geometrically finite Kleinian group, acting on $\mathbb C$, and let $\Lambda$ be the limit set of $\Gamma$, $\Omega=\mathbb C\setminus\Lambda$, $\infty\in\Omega$. Denote by $X$ either $C(\Lambda)$ or $h^\alpha(\Lambda)$, where $h^\alpha(\Lambda)=\{f\colon|f(z)-f(\zeta)|=o(|z-\zeta|^\alpha),\ z,\zeta\in\Lambda\}$. In а natural way, with the action of $\Gamma$ we relate a contable set $\Xi\subset\Omega$ and prove that $\operatorname{clos}_XL(\frac1{z-\alpha},\alpha\in\Xi)=X$. Bibl. 6 titles.
Received: 14.11.1995
Citation:
N. A. Shirokov, “Approximation on limit compacta of Kleinian groups”, Investigations on linear operators and function theory. Part 24, Zap. Nauchn. Sem. POMI, 232, POMI, St. Petersburg, 1996, 199–212; J. Math. Sci. (New York), 92:1 (1998), 3675–3684
Linking options:
https://www.mathnet.ru/eng/znsl3686 https://www.mathnet.ru/eng/znsl/v232/p199
|
Statistics & downloads: |
Abstract page: | 137 | Full-text PDF : | 37 |
|