Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1996, Volume 232, Pages 174–198 (Mi znsl3685)  

This article is cited in 4 scientific papers (total in 4 papers)

Reproducing kernels and contractive divisors in Bergman spaces

Jonas Hansbo

Department of Mathematics, Uppsala University, Sweden
Full-text PDF (887 kB) Citations (4)
Abstract: In the Hardy spaces $H^p$ of holomorphic functions Blaschke products are used to factor out zeros. However, for the Bergman spaces, the zero sets of which do not necessarily satisfy the Blaschke condition, the study of divisors is a more recent development. In [7], Hedenmalm showed the existence of a canonical contractive zero-divisor which plays the role of a Blascke product in the Bergman space $L^2_\alpha(\mathbb D)$. Duren, Khavinson, Shapiro and Sundberg [4,5] later extended Hedenmalm's result to $L^2_\alpha(\mathbb D)$, $0<p<\infty$.
In this paper an explicit formula for the contractive divisor is given for a zero set consisting of two points of arbitrary multiplicities. There is a simple one-to-one correspondence between the contractive divisors and reproducting kernels for certain weighted Bergman spaces. The divisor is obtained by calculating the associated reproducing kernel. The formula is then used to obtain the contractive divisor for a certain regular zero-set, as well as the contractive divisor associated with an inner function, with singular support on the boundary. Bibl. 13 titles.
Received: 20.08.1995
English version:
Journal of Mathematical Sciences (New York), 1998, Volume 92, Issue 1, Pages 3657–3674
DOI: https://doi.org/10.1007/BF02440151
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: English
Citation: Jonas Hansbo, “Reproducing kernels and contractive divisors in Bergman spaces”, Investigations on linear operators and function theory. Part 24, Zap. Nauchn. Sem. POMI, 232, POMI, St. Petersburg, 1996, 174–198; J. Math. Sci. (New York), 92:1 (1998), 3657–3674
Citation in format AMSBIB
\Bibitem{Han96}
\by Jonas~Hansbo
\paper Reproducing kernels and contractive divisors in Bergman spaces
\inbook Investigations on linear operators and function theory. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 1996
\vol 232
\pages 174--198
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3685}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1464433}
\zmath{https://zbmath.org/?q=an:0907.30048|0887.30030}
\transl
\jour J. Math. Sci. (New York)
\yr 1998
\vol 92
\issue 1
\pages 3657--3674
\crossref{https://doi.org/10.1007/BF02440151}
Linking options:
  • https://www.mathnet.ru/eng/znsl3685
  • https://www.mathnet.ru/eng/znsl/v232/p174
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :107
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024