Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1996, Volume 232, Pages 141–147 (Mi znsl3683)  

Uniqueness and normality for M. Riesz potentials and solutions of the Darboux equation

A. I. Sergeyev

St. Petersburg State University
Abstract: M. Riesz potentials $U_\alpha^\mu(x)=\int_{\partial\Omega}\frac{d\mu(y)}{|x-y|^{n-1+\alpha}}$ are considered where $\Omega$ is a domain in $\mathbb R^{n+1}$ with a nice boundary $\partial\Omega$, $\mu$ a Borel charge on $\partial\Omega$. These potentials satisfy the Darboux equation
\begin{equation} \Delta U+\frac\alpha yU_y=0,\qquad x=(\overline x,y),\quad\overline x\in\mathbb R^n. \end{equation}
Theorems of the following kind are stated: if $U^\mu_\alpha$ and $\mu$ decrease rapidly near a point $p\in\partial\Omega$ along $\partial\Omega$, then $\mu\equiv0$; analogous results are stated for solutions of (1). These results are closely connected with “normality properties”, i.e., the uniform boundedness (on compact subsets of $\Omega$) of potentials (respectively, solutions of (1)) $U^\mu_\alpha$ satisfying some growth restrictions along $\partial\Omega$. Bibl. 10 titles.
Received: 27.11.1995
English version:
Journal of Mathematical Sciences (New York), 1998, Volume 92, Issue 1, Pages 3635–3639
DOI: https://doi.org/10.1007/BF02440149
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: A. I. Sergeyev, “Uniqueness and normality for M. Riesz potentials and solutions of the Darboux equation”, Investigations on linear operators and function theory. Part 24, Zap. Nauchn. Sem. POMI, 232, POMI, St. Petersburg, 1996, 141–147; J. Math. Sci. (New York), 92:1 (1998), 3635–3639
Citation in format AMSBIB
\Bibitem{Ser96}
\by A.~I.~Sergeyev
\paper Uniqueness and normality for M.~Riesz potentials and solutions of the Darboux equation
\inbook Investigations on linear operators and function theory. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 1996
\vol 232
\pages 141--147
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3683}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1464431}
\zmath{https://zbmath.org/?q=an:0907.31002|0884.31003}
\transl
\jour J. Math. Sci. (New York)
\yr 1998
\vol 92
\issue 1
\pages 3635--3639
\crossref{https://doi.org/10.1007/BF02440149}
Linking options:
  • https://www.mathnet.ru/eng/znsl3683
  • https://www.mathnet.ru/eng/znsl/v232/p141
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024