|
Zapiski Nauchnykh Seminarov POMI, 1996, Volume 232, Pages 5–15
(Mi znsl3672)
|
|
|
|
This article is cited in 18 scientific papers (total in 18 papers)
Isometric embeddings of coinvariant subspaces of the shift operator
A. B. Aleksandrov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $\theta$ be an inner function. The main aim of the paper is to describe all positive measures on the unit circle $\mathbb T$ such that $\int_\mathbb T|f|^2\,d\mu=\|f\|^2_{H^2}$ for all continuous functions $f\in H^2\ominus\theta H^2$. Bibl. 8 titles.
Received: 15.11.1995
Citation:
A. B. Aleksandrov, “Isometric embeddings of coinvariant subspaces of the shift operator”, Investigations on linear operators and function theory. Part 24, Zap. Nauchn. Sem. POMI, 232, POMI, St. Petersburg, 1996, 5–15; J. Math. Sci. (New York), 92:1 (1998), 3543–3549
Linking options:
https://www.mathnet.ru/eng/znsl3672 https://www.mathnet.ru/eng/znsl/v232/p5
|
Statistics & downloads: |
Abstract page: | 221 | Full-text PDF : | 83 |
|