|
Zapiski Nauchnykh Seminarov POMI, 1996, Volume 233, Pages 183–209
(Mi znsl3667)
|
|
|
|
This article is cited in 20 scientific papers (total in 20 papers)
Forward-backward parabolic equations and hysteresis
P. I. Plotnikov Новосибирск
Abstract:
The following initial-boundary value problem for the forwardbackward parabolic equation in the bounded region $\Omega\in R^d$, $1\le d\le3$, is considered,
$$
\begin{gathered}
\Omega\times(0,T)\colon\ u_t=\Delta\varphi(u),\qquad\partial\Omega\times(0,T)\colon\ \nabla\varphi(u)\cdot n=0,\\
\Omega\colon\ u(\cdot,0)=u_0\in L_\infty(\Omega),\qquad\varphi(u_0)\in H_1(\Omega).
\end{gathered}
$$
It is supposed that the function $\varphi$ decreases monotonically on the interval $(-1,1)$ increases outside one and $|u_0|\ge1$. It is proved that this problem has the entropy solutions which describe the phase transition process with hysteresis. Bibl. 11 titles.
Received: 10.09.1995
Citation:
P. I. Plotnikov, “Forward-backward parabolic equations and hysteresis”, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Zap. Nauchn. Sem. POMI, 233, POMI, St. Petersburg, 1996, 183–209; J. Math. Sci. (New York), 93:5 (1999), 747–766
Linking options:
https://www.mathnet.ru/eng/znsl3667 https://www.mathnet.ru/eng/znsl/v233/p183
|
Statistics & downloads: |
Abstract page: | 276 | Full-text PDF : | 125 |
|