Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1996, Volume 233, Pages 183–209 (Mi znsl3667)  

This article is cited in 20 scientific papers (total in 20 papers)

Forward-backward parabolic equations and hysteresis

P. I. Plotnikov

Новосибирск
Abstract: The following initial-boundary value problem for the forwardbackward parabolic equation in the bounded region $\Omega\in R^d$, $1\le d\le3$, is considered,
$$ \begin{gathered} \Omega\times(0,T)\colon\ u_t=\Delta\varphi(u),\qquad\partial\Omega\times(0,T)\colon\ \nabla\varphi(u)\cdot n=0,\\ \Omega\colon\ u(\cdot,0)=u_0\in L_\infty(\Omega),\qquad\varphi(u_0)\in H_1(\Omega). \end{gathered} $$
It is supposed that the function $\varphi$ decreases monotonically on the interval $(-1,1)$ increases outside one and $|u_0|\ge1$. It is proved that this problem has the entropy solutions which describe the phase transition process with hysteresis. Bibl. 11 titles.
Received: 10.09.1995
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 93, Issue 5, Pages 747–766
DOI: https://doi.org/10.1007/BF02366851
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: P. I. Plotnikov, “Forward-backward parabolic equations and hysteresis”, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Zap. Nauchn. Sem. POMI, 233, POMI, St. Petersburg, 1996, 183–209; J. Math. Sci. (New York), 93:5 (1999), 747–766
Citation in format AMSBIB
\Bibitem{Plo96}
\by P.~I.~Plotnikov
\paper Forward-backward parabolic equations and hysteresis
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1996
\vol 233
\pages 183--209
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3667}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1699122}
\zmath{https://zbmath.org/?q=an:0928.35084}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 93
\issue 5
\pages 747--766
\crossref{https://doi.org/10.1007/BF02366851}
Linking options:
  • https://www.mathnet.ru/eng/znsl3667
  • https://www.mathnet.ru/eng/znsl/v233/p183
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :125
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024