|
Zapiski Nauchnykh Seminarov POMI, 1996, Volume 233, Pages 142–182
(Mi znsl3666)
|
|
|
|
This article is cited in 46 scientific papers (total in 46 papers)
Existence, uniqueness and attainability of periodic solutions of the Navier–Stokes equations in exterior domains
P. Maremontia, M. Padulab a Dipartimento di Matematica, Università della Basilicata
b Dipartimento di Matematica, Università di Ferrara
Abstract:
For arbitrary domain $\Omega\subset\mathbb R^n$, $n=2,3$, $\Omega\ne\mathbb R^2$, we prove the existence of weak periodic solutions to the Navier–Stokes equations and of regular solutions if the data are small or satisfy certain symmetry conditions. We show also that the periodic regular solutions are stable. Bibl. 38 titles.
Received: 21.05.1996
Citation:
P. Maremonti, M. Padula, “Existence, uniqueness and attainability of periodic solutions of the Navier–Stokes equations in exterior domains”, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Zap. Nauchn. Sem. POMI, 233, POMI, St. Petersburg, 1996, 142–182; J. Math. Sci. (New York), 93:5 (1999), 719–746
Linking options:
https://www.mathnet.ru/eng/znsl3666 https://www.mathnet.ru/eng/znsl/v233/p142
|
Statistics & downloads: |
Abstract page: | 192 | Full-text PDF : | 107 |
|