Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1996, Volume 233, Pages 112–130 (Mi znsl3664)  

On viscosity solutions for non-totally parabolic fully nonlinear equations

O. A. Ladyzhenskaya

С.-Петербургское отделение Математического института им. В. А. Стеклова РАН
Full-text PDF (774 kB) Citations (1)
Abstract: It is shown, how to prove global unique solvability of the first initial-boundary value problem in the class of continuous viscosity solutions for some classes of equations $-u_t+\mathcal F(u_x,u_{xx})=g(x,t,u_x)$ wit $\mathcal F(p,A)$ determined and elliptic only on some nonlinear subsets of values of arguments $(p,A)$. For this purpose we use the technic developed in the theory of viscosity solutions for degenerate elliptic equations. Bibl. 12 titles.
Received: 21.03.1995
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 93, Issue 5, Pages 697–710
DOI: https://doi.org/10.1007/BF02366848
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: O. A. Ladyzhenskaya, “On viscosity solutions for non-totally parabolic fully nonlinear equations”, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Zap. Nauchn. Sem. POMI, 233, POMI, St. Petersburg, 1996, 112–130; J. Math. Sci. (New York), 93:5 (1999), 697–710
Citation in format AMSBIB
\Bibitem{Lad96}
\by O.~A.~Ladyzhenskaya
\paper On viscosity solutions for non-totally parabolic fully nonlinear equations
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1996
\vol 233
\pages 112--130
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1699119}
\zmath{https://zbmath.org/?q=an:0932.35108}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 93
\issue 5
\pages 697--710
\crossref{https://doi.org/10.1007/BF02366848}
Linking options:
  • https://www.mathnet.ru/eng/znsl3664
  • https://www.mathnet.ru/eng/znsl/v233/p112
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024