|
Zapiski Nauchnykh Seminarov POMI, 1996, Volume 233, Pages 112–130
(Mi znsl3664)
|
|
|
|
On viscosity solutions for non-totally parabolic fully nonlinear equations
O. A. Ladyzhenskaya С.-Петербургское отделение Математического института им. В. А. Стеклова РАН
Abstract:
It is shown, how to prove global unique solvability of the first initial-boundary value problem in the class of continuous viscosity solutions for some classes of equations $-u_t+\mathcal F(u_x,u_{xx})=g(x,t,u_x)$ wit $\mathcal F(p,A)$ determined and elliptic only on some nonlinear subsets of values of arguments $(p,A)$. For this purpose we use the technic developed in the theory of viscosity solutions for degenerate elliptic equations. Bibl. 12 titles.
Received: 21.03.1995
Citation:
O. A. Ladyzhenskaya, “On viscosity solutions for non-totally parabolic fully nonlinear equations”, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Zap. Nauchn. Sem. POMI, 233, POMI, St. Petersburg, 1996, 112–130; J. Math. Sci. (New York), 93:5 (1999), 697–710
Linking options:
https://www.mathnet.ru/eng/znsl3664 https://www.mathnet.ru/eng/znsl/v233/p112
|
Statistics & downloads: |
Abstract page: | 184 | Full-text PDF : | 86 |
|