Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1996, Volume 233, Pages 9–29 (Mi znsl3658)  

This article is cited in 4 scientific papers (total in 4 papers)

Stability and bifurcation in viscous incompressible fluids

H. Amann

Institut für Mathematik, Universität Zürich, Switzerland
Full-text PDF (931 kB) Citations (4)
Abstract: We consider heat-conducting viscous incompressible (not necessarily Newtonian) fluids under the general Stokesian constitutive hypotheses. Given a natural and mild condition on the stress tensor at vanishing velocity, that is satisfied for Newtonian fluids, we discuss the stability behavior of stationary states at which the fluid is at rest and at constant temperature. In particular we prove the existence of global small strong solutions for rather general isothermal non-Newtonian fluids. We also study bifurcation problems and show that subcritical bifurcations can occur. This effect can be seen only if the full energy equation is taken into consideration, that is, if the energy dissipation term is not dropped, as is done in the usual Boussinesq approximation. Bibl. 29 titles.
Received: 03.11.1995
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 93, Issue 5, Pages 620–635
DOI: https://doi.org/10.1007/BF02366842
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: H. Amann, “Stability and bifurcation in viscous incompressible fluids”, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Zap. Nauchn. Sem. POMI, 233, POMI, St. Petersburg, 1996, 9–29; J. Math. Sci. (New York), 93:5 (1999), 620–635
Citation in format AMSBIB
\Bibitem{Ama96}
\by H.~Amann
\paper Stability and bifurcation in viscous incompressible fluids
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1996
\vol 233
\pages 9--29
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3658}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1699113}
\zmath{https://zbmath.org/?q=an:0963.76541}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 93
\issue 5
\pages 620--635
\crossref{https://doi.org/10.1007/BF02366842}
Linking options:
  • https://www.mathnet.ru/eng/znsl3658
  • https://www.mathnet.ru/eng/znsl/v233/p9
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:105
    Full-text PDF :91
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024