|
Zapiski Nauchnykh Seminarov POMI, 1996, Volume 235, Pages 87–103
(Mi znsl3644)
|
|
|
|
Integrable systems, Poisson pencils, and hyperelliptic Lax pairs
Yu. Fedorov Московский государственный университет
Abstract:
A new Lax pair for the multidimensional Manakov system on the Lie algebra $\mathrm{so}(m)$ with a spectral parameter defined on a certain unramified covering of a hyperelliptic curve is considered. For the Clebsh–Perelomov system on the Lie algebra $e(n)$, similar pairs are presented. Multidimensional analogs of the classical integrable Steklov–Lyapunov system describing a motion of a rigid body in an ideal fluid are found. Bibl. 15 titles.
Received: 02.04.1994
Citation:
Yu. Fedorov, “Integrable systems, Poisson pencils, and hyperelliptic Lax pairs”, Differential geometry, Lie groups and mechanics. Part 15–2, Zap. Nauchn. Sem. POMI, 235, POMI, St. Petersburg, 1996, 87–103; J. Math. Sci. (New York), 94:4 (1999), 1501–1511
Linking options:
https://www.mathnet.ru/eng/znsl3644 https://www.mathnet.ru/eng/znsl/v235/p87
|
Statistics & downloads: |
Abstract page: | 159 | Full-text PDF : | 69 |
|