|
Zapiski Nauchnykh Seminarov POMI, 1996, Volume 234, Pages 125–136
(Mi znsl3632)
|
|
|
|
On the image in $H^2(Q^3;R)$ of the set of closed 2-forms with preassigned kernel
B. S. Kruglikov Московский государственный университет
Abstract:
If $(P^{2n},\omega)$ is a symplectic manifold and $Q^3$ is its orientable closed submanifold such that $\omega/Q\ne0$, then there arises a one-dimensional distribution $\mathcal L=\operatorname{Ker}(\omega/Q)$. We study the dependence of $\omega$ in a neighborhood of $Q^3$ and of $[\omega]\in H^2(Q;R)$ on $\mathcal L$. Bibl. 13 titles.
Received: 20.10.1995
Citation:
B. S. Kruglikov, “On the image in $H^2(Q^3;R)$ of the set of closed 2-forms with preassigned kernel”, Differential geometry, Lie groups and mechanics. Part 15–1, Zap. Nauchn. Sem. POMI, 234, POMI, St. Petersburg, 1996, 125–136; J. Math. Sci. (New York), 94:2 (1999), 1218–1225
Linking options:
https://www.mathnet.ru/eng/znsl3632 https://www.mathnet.ru/eng/znsl/v234/p125
|
Statistics & downloads: |
Abstract page: | 95 | Full-text PDF : | 37 |
|