|
Zapiski Nauchnykh Seminarov POMI, 1996, Volume 234, Pages 20–38
(Mi znsl3628)
|
|
|
|
On the structure of 3-dimensional minimal parabolic surfaces in Euclidean space
A. A. Borisenko (jr.) Московский государственный университет
Abstract:
It is shown that the structure of a three-dimensional minimal parabolic surface is determined by the pair $(V^2,\gamma)$, where $V^2$ is a minimal two-dimensional surface in $S^n$ and $\gamma$ satisfies $\Delta\gamma+2\gamma=0$ (here $\Delta$ is the Laplace operator in $R^n$). It is also shown that the singularities of the surface are determined by zeros of $\gamma$. Bibl. 9 titles.
Received: 20.10.1992
Citation:
A. A. Borisenko (jr.), “On the structure of 3-dimensional minimal parabolic surfaces in Euclidean space”, Differential geometry, Lie groups and mechanics. Part 15–1, Zap. Nauchn. Sem. POMI, 234, POMI, St. Petersburg, 1996, 20–38; J. Math. Sci. (New York), 94:2 (1999), 1147–1160
Linking options:
https://www.mathnet.ru/eng/znsl3628 https://www.mathnet.ru/eng/znsl/v234/p20
|
Statistics & downloads: |
Abstract page: | 123 | Full-text PDF : | 42 |
|