|
Zapiski Nauchnykh Seminarov POMI, 2010, Volume 376, Pages 167–175
(Mi znsl3622)
|
|
|
|
Power series with fast decreasing coefficients
A. M. Chirikov Herzen State Pedagogical University of Russia, St. Petersburg, Russia
Abstract:
Let $f(x)=\sum_{n=0}^\infty a_nx^n$ be an analytic function in the unit disc such that for
some $\lambda>1$, $C_0,C_1,C_2,C_3>0$ we have
$$
|f(x)|\le C_0\exp(-C_1|\log(1-x)|^\lambda),\qquad\frac12<x<1
$$
and
$$|a_n|\le C_2\exp\biggl(-C_3\frac{\sqrt n}{\log(n+2)}\biggr),\qquad n\ge0.
$$
Then $f\equiv0$. Bibl. – 5 titles.
Key words and phrases:
Taylor coefficients, power series, decreasing on a radius, uniqueness theorems for analytic functions.
Received: 12.05.2010
Citation:
A. M. Chirikov, “Power series with fast decreasing coefficients”, Investigations on linear operators and function theory. Part 38, Zap. Nauchn. Sem. POMI, 376, POMI, St. Petersburg, 2010, 167–175; J. Math. Sci. (N. Y.), 172:2 (2011), 270–275
Linking options:
https://www.mathnet.ru/eng/znsl3622 https://www.mathnet.ru/eng/znsl/v376/p167
|
Statistics & downloads: |
Abstract page: | 205 | Full-text PDF : | 65 | References: | 47 |
|