Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 376, Pages 167–175 (Mi znsl3622)  

Power series with fast decreasing coefficients

A. M. Chirikov

Herzen State Pedagogical University of Russia, St. Petersburg, Russia
References:
Abstract: Let $f(x)=\sum_{n=0}^\infty a_nx^n$ be an analytic function in the unit disc such that for some $\lambda>1$, $C_0,C_1,C_2,C_3>0$ we have
$$ |f(x)|\le C_0\exp(-C_1|\log(1-x)|^\lambda),\qquad\frac12<x<1 $$
and
$$|a_n|\le C_2\exp\biggl(-C_3\frac{\sqrt n}{\log(n+2)}\biggr),\qquad n\ge0. $$
Then $f\equiv0$. Bibl. – 5 titles.
Key words and phrases: Taylor coefficients, power series, decreasing on a radius, uniqueness theorems for analytic functions.
Received: 12.05.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 172, Issue 2, Pages 270–275
DOI: https://doi.org/10.1007/s10958-010-0197-2
Bibliographic databases:
Document Type: Article
UDC: 517.537.3
Language: Russian
Citation: A. M. Chirikov, “Power series with fast decreasing coefficients”, Investigations on linear operators and function theory. Part 38, Zap. Nauchn. Sem. POMI, 376, POMI, St. Petersburg, 2010, 167–175; J. Math. Sci. (N. Y.), 172:2 (2011), 270–275
Citation in format AMSBIB
\Bibitem{Chi10}
\by A.~M.~Chirikov
\paper Power series with fast decreasing coefficients
\inbook Investigations on linear operators and function theory. Part~38
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 376
\pages 167--175
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3622}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 172
\issue 2
\pages 270--275
\crossref{https://doi.org/10.1007/s10958-010-0197-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78651309757}
Linking options:
  • https://www.mathnet.ru/eng/znsl3622
  • https://www.mathnet.ru/eng/znsl/v376/p167
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :65
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024