Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 376, Pages 88–115 (Mi znsl3620)  

This article is cited in 7 scientific papers (total in 7 papers)

One-sided Littlewood–Paley inequality in $\mathbb R^n$ for $0<p\le2$

N. N. Osipov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (715 kB) Citations (7)
References:
Abstract: We prove the one-sided Littlewood–Paley inequality for arbitrary collections of mutually disjoint rectangular parallelepipeds in $\mathbb R^n$ for the $L^p$-metric, $0<p\le2$. The paper supplements the author's earlier work, which dealt with the situation of $n=2$. That work was based on R. Fefferman's theory, which makes it possible to verify the boundedness of certain linear operators on two-parameter Hardy spaces (i.e., Hardy spaces on the product of two Euclidean spaces $H^p(\mathbb R^{d_1}\times\mathbb R^{d_2})$). However, Fefferman's results are not applicable in the situation where the number of Euclidean factors is greater than 2. Here we employ the more complicated Carbery–Seeger theory, which is a further development of Fefferman's ideas. It allows us to verify the boundedness of some singular integral operators on the multiparameter Hardy spaces $H^p(\mathbb R^{d_1}\times\cdots\times\mathbb R^{d_n})$, which leads eventually to the required inequality of Littlewood–Paley type. Bibl. – 13 titles.
Key words and phrases: Hardy space, atomic decomposition, Journé's lemma, Calderón–Zygmund operator.
Received: 10.04.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 172, Issue 2, Pages 229–242
DOI: https://doi.org/10.1007/s10958-010-0195-4
Bibliographic databases:
Document Type: Article
UDC: 517.443+517.982.27
Language: Russian
Citation: N. N. Osipov, “One-sided Littlewood–Paley inequality in $\mathbb R^n$ for $0<p\le2$”, Investigations on linear operators and function theory. Part 38, Zap. Nauchn. Sem. POMI, 376, POMI, St. Petersburg, 2010, 88–115; J. Math. Sci. (N. Y.), 172:2 (2011), 229–242
Citation in format AMSBIB
\Bibitem{Osi10}
\by N.~N.~Osipov
\paper One-sided Littlewood--Paley inequality in $\mathbb R^n$ for $0<p\le2$
\inbook Investigations on linear operators and function theory. Part~38
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 376
\pages 88--115
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3620}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 172
\issue 2
\pages 229--242
\crossref{https://doi.org/10.1007/s10958-010-0195-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78651281560}
Linking options:
  • https://www.mathnet.ru/eng/znsl3620
  • https://www.mathnet.ru/eng/znsl/v376/p88
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :122
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024